Dilemma Messen: Der Strom

Strom messen Bild 3Das Problem mit den falschen Werten

Ich bekomme ja des Öfteren Fragen, zu den unterschiedlichsten Elektronik-Projekten, an denen die Menschen so werkeln.

Der Löwenanteil hängt inhaltlich mit Fehlfunktionen von Selbstbauten zusammen, meist schon bei der Inbetriebnahme. Da man gerade so aus der Ferne nur Glaskugellesen betreibt, sind Messwerte mit das Wichtigste, was bekannt sein sollte.

Nach all den Jahren habe ich für mich die Erkenntnis gewonnen, dass ein sehr großer Teil der Schwierigkeiten daher kommt, dass es Probleme bei der Messung des real fließenden Stroms gibt. Oft werden Strom und Spannung verwechselt, ich habe da ja auch schon einiges zu geschrieben. Natürlich muss auch der Umgang mit dem Multimeter zielsicher sein, am Ende liegen ansonsten eine ruinierte Schaltung und auch ein defektes Messgerät auf dem Tisch. Das Thema Multimeter ist hier im Blog schon beschrieben, im Internet findet sich auch noch reichlich Stoff zu der Materie.

Hier geht es mir nun darum, anhand eines sehr einfachen Beispiels nochmals zu erläutern, an welcher Stelle gemessen werden muss und wo dabei die Messspitzen anzusetzen sind. Ganz wichtig ist natürlich auch die Einstellung des Messgerätes.

Den Strom direkt messen

Im Bild ist ein einfacher Stromkreis zum Betrieb einer Leuchtdiode skizziert.

Ausgehend von der Stromquelle UB, fließt der Strom durch den Widerstand R1, zur LED D1 und schließlich wieder zurück. Man kann unschwer erkennen, dass eine Unterbrechung dieser Reihe dafür sorgt, dass die LED erlischt, der Stromkreis ist schließlich unterbrochen.

Strom messen Bild 2Genau diese Unterbrechung ist jetzt auch notwendig, um den Strom zu messen, der in der Schaltung unterwegs ist. Da es sich hier um eine Reihenschaltung handelt, ist es eigentlich völlig egal, an welchem Punkt die Unterbrechung erfolgt, der Strom ist an jeder Stelle der Gleiche. Er geht nicht verloren, er verrichtet lediglich Arbeit und fließt exakt wieder raus, wie herein. Dieser Schnitt bzw. so eine Unterbrechung, ist immer notwendig, wenn der Strom direkt gemessen werden soll, anders geht es nicht! Jedenfalls dann nicht, wenn man mit einem klassischen Multimeter und zwei Messspitzen ans Werk geht, was wohl beim Großteil der Messungen im privaten Bereich, der Fall sein dürfte.

Strom messen Bild 3Wie nun genau mit dem Messgerät zu verfahren ist, kann an dieser Stelle nur grob aufgezeigt werden. Manch günstiges Multimeter besitzt vielleicht gar keinen Strommessbereich, dann ist die direkte Messmethode so nicht möglich! Am Sichersten ist ein Blick ins Handbuch, es gibt mittlerweile zu viele Modell-Varianten, für einen zuverlässigen Hinweis.

Bei Unsicherheiten zum Umgang mit dem Messgerät weise ich noch mal auf den weiter oben verlinkten Artikel zum Thema „Multimeter“ hin, viele Fragen sind vielleicht dort schon beantwortet.

Da hier jetzt davon ausgegangen wird, dass das benutzte Messgerät Ströme messen kann (wäre ja auch blöd für so einen Artikel, wenn das nicht ginge, oder? ;-) ), muss man sich evtl. für einen Messbereich entscheiden. Hier hilft oft wirklich nur ein Blick in das Handbuch oder gegebenenfalls auf den Ein-/Wahlschalter, um festzustellen, welcher maximale Strom in den einzelnen Messbereichen gemessen werden kann und vor allem darf!

Da so eine Leuchtdiode im Allgemeinen nur einige Milliampere benötigt, würde wahrscheinlich ein Messbereich mit einem Maximum vom vielleicht 250 mA ausreichen. Ist aber ein Fehler in der Schaltung oder es besteht der Verdacht auf einen Kurzschluss, empfiehlt es sich, mit dem größten Bereich zu beginnen, um das Multimeter zu schützen. Bei den gängigen Geräten dürfte dies der 10 Ampere Bereich sein.

Um nun zu messen, müssen die Messleitungen in die entsprechenden Buchsen am Messgerät gesteckt werden. Welche das sind, muss wieder der Beschriftung oder der Anleitung entnommen werden, passend zum gewählten Messbereich.

Gehen wir nun davon aus, dass die Unterbrechung des Stromkreises zwischen den Punkten C und D im Bild liegt. Der Punkt C wird verbunden mit dem GND Anschluss, dies ist die negativste Stelle in der Messchaltung.

Wird der 10 A Bereich für die zweite Messspitze genutzt, kommt die Leitung in die entsprechende Buchse und die Spitze zum Messen an Punkt D. Im Milliamperebereich muss die Buchse natürlich, entsprechend dem Multimeter, evtl. gewechselt werden. Moderne Messgeräte erkennen die Polarität automastisch, hat man + und – vertauscht, ist dies für die Messung nicht kritisch, im Display wird höchstens ein – angezeigt. Sollte allerdings ein analoges Gerät genutzt werden, wird der Zeiger in die falsche Richtung ausschlagen.

Natürlich ist in diesem Beispiel das Auftrennen der Leitungen eigentlich Unfug. Selbst die Leitungen, welche die Schaltung mit Strom versorgen, sind ja Teil der Reihenschaltung und es ist natürlich wesentlich weniger umständlich, die Verbindung von der Stromquelle zur Schaltung zu trennen, als auf einer Platine, die Bahnen zu zerschneiden.

Zum Messen muss natürlich auch ein Strom fließen, einschalten also nicht vergessen ;-)

Vorsicht! Auch wenn es hier im Beispiel nur um eine LED mit harmlosen Strömchen geht, kann bei anderen Schaltungen durchaus gefährliches Potential vorhanden sein! Im Zweifel: Finger weg!

Indirekte Messung

Möchte man nun unter allen Umständen das Auftrennen der Leitungen vermeiden, könnte im gezeigten Beispiel, auch die indirekte Messung genutzt werden. In diesem Fall reicht es aus, die Spannung über dem Widerstand zu messen und durch den Wert eben dieses Widerstandes zu teilen. Die Spannung in Volt, geteilt durch den Widerstandswert in Ohm, ergibt den Strom in Ampere.

Auch hier: Vorsicht! Die indirekte Messung ist eine Spannungsmessung (Volt)! Sollte das Multimeter noch auf einen Strommessbereich (Ampere!) eingestellt sein, bedeutet dies eine sehr niederohmige Verbindung bei der Messung. Der Widerstand würde dann praktisch überbrückt und die LED den vollen Strom abbekommen, was sie höchstwahrscheinlich nicht überstehen dürfte.

Wie immer: Seid vorsichtig und viel Erfolg!

 

 

Powerbank – Solar – Ampere 2 go

Wie einige Stammleser hier wissen, habe ich in der Vergangenheit des öfteren kleine Projekte realisiert, welche mir zumindest im Garten ein netzstromunabhängiges Arbeiten ermöglichen. Sollte ich irgendwann mal wieder in den Genuss kommen Camping zu machen, dürfte dies zusätzlich hilfreich sein ;-)

Hier ein wenig 12V aus der Sonne  neuerdings (eher 5V), ohne feste Verbindung an das Stromnetz auskommen zu können, ist verlockend. Durch das enorme Ansteigen der USB-5V-Mobilgeräte, sind ja auch in einer Menge Varianten möglich, die vor ein paar Jahren schlicht nicht zu finden waren.

Mir geht es allerdings gar nicht so sehr darum, den kompletten Haushalt mit Energie zu versorgen, da müss(t)en andere Größenordnungen her. Mir geht es eben um die Möglichkeit, an beliebigen Standorten elektrisch versorgt zu sein, wenn es nicht gerade um das Kochen, Heizen oder Kühlen geht.

Oft gibt es aber falsche Vorstellungen der Leistungsfähigkeit von mobilen Stromversorgungen für Kleinstgeräte, genau der Grund für mich, diesen Blogbeitrag hier zu schreiben ;-) Ausgelöst durch einige Kundenbewertungen und Forenbeiträge im weltweiten Netz und auch durch Emails, welche als Reaktion auf meine Artikel hier so eingetroffen sind, muss ich einfach ein paar Zeilen online bringen.

Ein kleiner Vergleich zur Veranschaulichung

Um zu Beginn doch einmal bei einem Haushaltsgerät zu bleiben, nehme ich als Anschauungsobjekt eine Kaffeemaschine mit 1000 Watt Leistungsaufnahme, so ein Teil kennt ja wahrscheinlich jeder. Im deutschen Versorgungsnetz leben wir mit 230V Wechselspannung, das ist auch kein Geheimnis. P (Leistung) = U (Spannung) x I (Strom), folglich benötigt die Maschine 1000 (W) : 230 (V) = 4,3 Ampere.

An die 230V Steckdose in der Küche angeschlossen, möchte die Maschine in der aktiven Kochphase also 4,3A bekommen, um das Wasser zu erhitzen und eben Kaffee aufzubrühen. Die Werte einfach mal im Kopf behalten.

Strom einer Powerbank

Eine durchschnittliche Powerbank im Jahre 2018 bietet meist eine Kapazität von 6000 – 16000 mA/h, je nach Größe, Bauform und Gewicht. Gehen wir hier mal von 10000 mA/h aus, bedeutet dies nichts anderes, als das die Akkus im inneren des Gerätes eben diese Kapazität bieten, natürlich davon ausgehend, dass der Hersteller nicht schöngerechnet hat. Diese Akkus können also entweder einen Verbraucher 1 Stunde lang mit 10 Ampere (=10000 mA) oder 10000 Stunden lang mit 1 mA versorgen.

Weiter ist wohl unbestritten, dass ein USB-Port mit einer Spannung von 5V arbeitet, bei einer gängigen Powerbank meistens mit einem maximal entnehmbaren Strom von 2A, oft auch nur 1A. Nehmen wir mal beispielhaft 2A als möglich, sind das 2A x 5V = 10W. Nicht vergessen, bei der Leistung ist es egal, ob ich nun bei 1000W mit 1 A bei 1000V oder mit 1V an 10000A arbeite, es bleibt eine Leistung von 1000W. Hier wird vielleicht schon klar, warum man aus einer Powerbank niemals eine Kaffeemaschine oder einen Toaster betreiben können wird, welcher für den normalen Haushalt gedacht ist.

Um trotzdem aus einer Powerbank eine Kaffeemaschine betreiben zu können, müsste also ein Gerät her, welches technisch derart realisiert ist, dass es mit einer Leistung von rund 10W Wasser in nennenswerter Menge und Zeit ausreichend erhitzen kann Beim Verfassen dieses Artikels habe ich in der Form noch nichts gefunden, unmöglich wird es aber wahrscheinlich nicht sein ;-) Bis vor einigen Jahren habe ich auch keine Lötkolben gekannt, die mit normalen AA-Batterien funktionieren, mittlerweile findet man die Teile in jedem einigermaßen sortierten Baumarkt.

Ohne Sonne kein Strom. Immerhin, für die Beleuchtung von oben reichten die LED’s der Powerbank, aufgeladen mit Sonnenlicht. Für das Notebook musste aber dann doch der Netzstrom her :-)

Laden externer Geräte mit einer Powerbank

Nun kann man ja auf die (an sich) korrekte Idee kommen, dass mit einer Powerbankkapazität von 10000 mA/h ein Smartphone mit einer Akkukapazität von 3000 mA/h mindestens drei mal vollständig aufgeladen werden kann, bei einem Ladestrom von rund 2 Ampere obendrein in knapp 1,5 Stunden. Könnte man, ja…

Leider ist allerdings die Erde sozusagen ein Strafplanet, alles muss mit Verlusten bezahlt werden! Nichts, was man hier an Energie erhält, lässt sich verlustfrei von A nach B transportieren. Um die Geschichte noch ein wenig ineffizienter zu gestalten, kommt zusätzlich ein Anpassungsproblem der Spannungen hinzu:

Der USB-Port soll 5V an Spannung bereitstellen, die gängigen Akkutypen liefern aber vollgeladen nur ca. 4,2V. Also muss eine Technik her, welche immer dafür sorgt, dass die Akkuspannung möglichst stabil auf 5V herauftransformiert wird. Zusätzlich möchte der verwöhnte Benutzer (ich bin auch so einer ;-) ) auch noch per netter LED-Kette oder ähnlichem auf dem Laufenden gehalten werden, was sich in der Powerbank so abspielt. Beim Aufladen des Akkus will auch die Ladeelektronik versorgt werden, wieder Verluste. Tja, und das Ergebnis? Mehr als 60% der Akkukapazität einer Powerbank, sind kaum nutzbar. Bei qualitativ brauchbaren Exemplaren versteht sich, hat man beim Kauf daneben gegriffen, geht weniger sozusagen immer. In der Praxis bin ich bei der Annahme, dass mit mehr als 50% nutzbarer Kapazität einer Powerbank eher nicht gerechnet werden sollte, ganz gut ausgekommen, Schlussendlich darf man auch nicht vergessen, dass 5V nicht gerade Hochspannung sind, mit meterlangen (und querschnittsmäßig dünnen) USB-Strippchen, kommen weitere Verluste hinzu. Die Ladezeit an sich KANN kurz sein, muss sie aber nicht. Hängt nun ein Handy mit 3 Meter langem und zeitgleich dünnem USB-Kabel an der Powerbank, kann alleine schon der Leitungswiderstand den Ladestrom negativ beeinflussen. Wo Widerstand herrscht, gibt es auch einen Spannungsabfall und am zu ladenden Gerät kommt weniger an. Tja, was noch? Die Ladeelektronik im Telefon und, vor allem, der Strombedarf des Smartphones während des Ladens verlangt Beachtung. Ist das Gerät aktiv und benötigt dementsprechend Leistung, sagen wir mal 1 Ampere, sind schon 50% des erhofften Stromes für die Ladung anderweitig dahin. Bei den oben angenommenen Werten ist die Ladezeit dann auf rund 3 Stunden angestiegen. Die evtl. strombegrenzende Wirkung der Kabel, Verluste in der Ladeelektronik des Telefons und vielleicht fragwürdige Leistungsangaben der Hersteller, noch außen vor ;-)

Zu den USB-Ladekabeln an sich hatte ich übrigens in der Vergangenheit schon ein paar Worte verloren, ich verlinke mal. In der Praxis ist alles allerdings nicht ganz so drastisch und schrecklich, meist wird ja ein nicht völlig entladenes Smartphone oder Tablet mit einer Powerbank eher zwischengeladen, das Mobilgerät ist nicht unbedingt Daueronline und die Strippen sind nicht so arg schlecht – man kommt klar :-)

Laden der Powerbank

Kurzversion: Steckernetzteil in die passende Steckdose stecken, USB-Strippe rein und ab an die Bank. Einigermaßen verlustarme Kabel und eine brauchbare Laderegelung vorausgesetzt, kommt die Rechnung Akkukapazität geteilt durch Ladestrom gleich Ladezeit recht gut aus, gut 30% sollte man aber dennoch auf die erwartete Zeit addieren.

Schwieriger wird das natürlich unterwegs. Ist kein Netzstrom verfügbar, bleiben aktuell nennenswert nur die Sonnenstrahlen als Energiespender. Eigentlich funktioniert dies gut, man sollte allerdings realistische Vorstellungen haben und, das wichtigste überhaupt, es muss Sonne da sein. Nicht nur erahnt hinter Wolken oder irgendwo im Rücken der Solarzellen, nein, volle Pulle senkrecht drauf auf’S Paneel. Auch wenn die Effizienz der Solarzellen in den vergangenen Jahren wirklich merklich gestiegen ist, kommt man über 18% selten hinaus. Für den Nutzer ist dies allerdings eher zweitrangig, es zählt ja der nutzbare Strom am Ausgang der Ladetechnik und nicht das, was die Sonne wirklich an Energie zu bieten hätte. Es gibt nur eben eines was leider unumgänglich ist: Viel Solarstrom braucht auch viel Fläche. Ist so, kann man nicht ignorieren.

Damit sind wir dann auch an dem Punkt, warum ich diesen Artikel überhaupt schreibe. Die beiden „low cost“ Powerbanks im ersten Bild dieses Artikels, sind mit Solarzellen ausgestattet. Liegen sie in der Sonne, fließt tatsächlich ein Ladestrom. Die Tatsache, dass beim Laden in praller Sonne auch die Akkus im inneren praktisch mitgekocht werden, ignoriere ich an dieser Stelle. Sie behaupten eine Kapazität von 15000 mA/h zu besitzen, sind mit durchaus effektiven LED’s zur Beleuchtung ausgestattet und können zum Standard-USB auch eben per Sonnenlicht geladen werden. Die Teile sind jetzt nicht der High-Tech-Kanaller, haben sich in den letzten 2 Jahren aber bestens bewährt, werden nur gelegentlich zu Unrecht mangelhaft bewertet. Ich versuche mal, das aufzuschlüsseln.

Das Solarpaneel hier links im Bild, ist eine aktuelle Anschaffung für meine Strom-im-Sommer-im-Garten-Idee. Mit der gesamten Fläche sind nach Herstellerangabe maximal 3,5A Strom bei 5V unter optimalen Bedingungen zu realisieren. In der Praxis komme ich auf rund 2,8A. Diese aber eher rechnerisch, ich habe einfach kein Gerät mit dieser hohen Dauerstromaufnahme, welches über einen relevanten Zeitraum hinweg Messungen ermöglichen würde. Diese Werte sind mir aber in der Praxis eher zweitrangig, ich betreibe meine Mini-Insellösung in der Anordnung Solarpaneel -> Powerbank -> Verbraucher. Mal mit nur dem Tablet als Endgerät, gelegentlich zusätzlich der Minilötkolben und das Smartphone, wichtig ist mir die verfügbare Energie aus der Powerbank. Unter dem Strich soll das Solarpaneel einfach nur genug Nachschub liefern.

Das Paneel hat zwei USB-Ausgänge, für längere Aktionen kommt an jeden eine Powerbank, bisher hat dies immer ausgereicht. Nur, die Sonne muss da sein! Jetzt bin ich allerdings nicht so irre, mich bei grauem Wetter oder gar Regen in den Garten zu setzen um dabei festzustellen, dass ohne Sonne keine nennenswerte Ladung stattfindet Beim Camping und überhaupt unterwegs allerdings, könnte dies natürlich schon eine Rolle spielen, da hilft nur das Hoffen auf genug Akkupower bis zum nächsten Sonnenschein. Generell würde ich aber immer empfehlen, mit aufgeladenen Geräten auf Tour zu gehen ;-)

Bei solchem Wetter, hält sich die Solarenergie eher in Grenzen. Die meiste Zeit beim Erstellen dieses Artikels, haben sich Sonne und Wolken im Minutenrythmus abgewechselt.

 

 

Mehr als 160 mA sind gerade nicht drin, die Sonne ist allerdings in diesem Moment vollständig von den Wolken verdeckt. Dringen die ersten Sonnenstrahlen durch, geht es recht schnell auf etwa 900 mA, mehr scheint meine Powerbank einfach beim jetzigen Ladestand nicht zu verlangen.

 

Zurück zum Anlass, diesen Artikel zu schreiben. Viele Bewertungen im WWW zerreißen die Solarpowerbanken regelrecht. „Die Zelle kann den Akku gar nicht laden“, „alles dauert ewig“ und „Gerät nutzlos“, heißt es oft.

Nun, doch, kann sie alles! Aber nur elend langsam. Was aber anhand der Fläche auch kein Wunder ist. Die Solarzelle dieser Powerbank hat knapp 1/6 der Fläche, die das gezeigte eigenständige 3,5A-Solarpaneel mit nur einer seiner 3 Teilflächen bietet. Konkret bedeutet dies,1 Ampere pro Teilfläche, bei 1/6 davon hat die kleine Zelle auf der Powerbank eine Stromausbeute von roundabout 160 mA, Verluste und Co nicht im Ansatz bedacht. Sie bietet eine (Herstellerangabe) Kapazität von 15000 mA/h, Man muss nun nicht Albert Einstein sein, um auf gut 100 Stunden Ladezeit zu kommen. Volle Pulle ununterbrochen Sonne und immer korrekt ausgerichtet versteht sich ;-) Das wird sehr, sehr lange dauern!

Aber: Im hintersten Ödland immerhin die Chance, vielleicht noch den letzten rettenden Anruf tätigen zu können! :-D

Bemerkungen am Rande

Jemand schrieb, mit 12V Zellen hat man dann ja mehr Leistung. Schön wäre es, ist aber Unsinn. Leistung bleibt Leistung. Habe ich eine Leistung von z. B. 60W zur Verfügung, sind dies bei 12V eben 5A Strom. Bei 5V immerhin 12 A – es bleiben 60W. 12V Geräte kann ich an 5V nicht betrteiben, beim Betrieb von 5V Geräten an 12V muss ich 7V loswerden, oft buchstäblich verheizen – Effizient geht anders ;-)

Gerne kommt auch die Frage, ob man nicht den Getränkekühler im Sommer auch im Garten unter dem Sonnenschirm oder am Strand betreiben kann. Nun, bestimmt nicht aus einer USB-Powerbank, der Rest sollte sich aus dem Artikel ergeben.

Wichtig ist natürlich auch die Tatsache, dass Sonnenenergie flüchtig ist. Man muss sie also speichern, gängig sind hier Akkus. Eine Powerbank oder ein Smartphone bringen ihre Akkus mit, zunächst kein Problem. Ist der Akku allerdings voll, ist nichts mehr mit speichern. Dann kann man nur verbrauchen was über ist, ohne Sonne wird sofort auf die gespeicherte Energie zurückgegriffen. Wer also auch bei einem längeren Tripp in der Wildnis auf der sicheren Seite stehen möchte, sollte sich vorhe gut seinen Strombedarf berechnen und ausreichen Speicherkapazitötämit sich führen und diese bei jeder Gelegenheit aufladen.

Fazit:

Mobile Kommunikation, Licht mit LED-Lampen, Radio oder mobile Kleinleistungswerkzeuge kein Problem, darüber wird es schon Aufwändiger.

Nimmt man nur mal ein Notebook als Beispiel, werden oft 19V bei rund 4A gewünscht, da muss zusätzliche Technik her. Veranschlagt man den Leistungsbedarf mit rund 100W und wählt als Solarquelle Module mit 12V Ausgangsspannung, muss mindestens ein Step-Up-Wandler von 12 auf 19V angeschafft werden (die sogenannten KFZ-Notebookadapter-/Netzteile sind nichts anderes), um Sonnenschwankungen zu kompensieren, braucht es aber auch noch einen Akku. Um diesen aus der Sonne zu laden, ist ein Solarladeregler ebenso Pflicht. Will man sinnvoll an die Sache gehen, liegt der Pufferakku im Bereich der Größe einer kleinen Autobatterie. Für 100W Leistung dürften rund 2-3 Quadrtameter Solarpaneel nötig sein, um frustfrei über die Runden zu kommen, solange die Sonne scheint. Da das Notebook alleine schon knapp unter 100W für sich beanspruchen kann, bleibt für eine Akkuladung natürlich nur dann eine Reserve, wenn das Notebook gar nicht läuft :mrgreen:

Immerhin, mein klassischer Geräteaufbau für ein bisschen produktives EDV- und Elektronikwerkeln im Garten funktioniert. Das recht betagte Galaxy Tab 2, die Bluetoothtastatur und mein Handy halten eigentlich immer ausreichend lange durch. Scheint die Sonne intensiv genug, wird die Powerbank nicht mal vollständig entladen, allerdings starte ich im Allgemeinen auch den Tag mit vollen Akkus an allen Geräten. Wenn ich zwischendurch den USB-Lötkolben oder auch mein DSO-138 mal anklemme, fällt das allgemein kaum ins Gewicht, ich bin zufrieden und wünsche Euch einen schönen Sommer :-)

 

 

 

 

 

 

Schon besser!

amperemeter__okNa, das sieht doch schon besser aus :-)

Das wird das alte Amperemeter wohl als Ersatzteilspender dienen, wenn’s denn mal notwendig werden sollte…

 

 

 

 

 

Ein bisschen Strom aus der Sonne

solar_powered_tablet

Wenn man so im Freien seine Mobilgeräte nutzt, ist irgendwann natürlich auch der stärkste Akku leer. Dann heißt es Steckdose suchen oder vielleicht auch erstmal Strom nach draußen legen, wer hat schon überall einen 230V Anschluß. Finde ich persönlich eher lästig, nebenbei braucht man ja in der Regel nur 5V und eine USB Buchse, bestenfalls 12V für Geräte, welche im Auto bzw. am Zigarettenanzünder betrieben werden können.

solar_tablelightIrgendwo gab es in den letzten Monaten mal für einen Euro Solar Gartenleuchten, die während des Tages geladen werden und dementsprechend in der Dunkelheit leuchten. Normalerweise stecken die Teile mittels Erdspieß im Boden, mit ein bisschen Trickserei und einer transparenten Dose geht’s aber auch auf dem Tisch. Leuchtwunder sind das natürlich nicht, drei Stück nebeneinander reichen gerade so, daß man seine Sachen auf dem Tisch findet ;-) Im Boden steckend als optischer Gag ist das alles OK, zum Geräte laden reicht dies natürlich nicht.

solar_paneelInspiriert durch die Solarlichter habe ich mich an ein paar Solarpaneele erinnert, die ich vor etlichen Jahren schon als kleines Balkonprojekt auf eine alte Schranktür Holzplatte geschraubt hatte. Leider habe ich keine Datenblätter mehr dazu, wenn ich mich recht erinnere lag der maximale Gesamtstrom aus allen zusammen aber so bei rund 1,2 Ampere, sollte für einen Versuch also ausreichend sein. Da sie zuätzlich schon ein wenig unter Alterung leiden dürften, wird die Leistungsabgabe wohl jetzt um einiges niedriger ausfallen.





 

solar_boxIrgendwo muss die Sonnenenergie nun zunächst zwischengespeichert werden. Da ich am Sonntag gerade keine 12V Akkus größerer Kapazität aus dem Hut zaubern kann, wird die Starterbox für Auto und Roller Zweckentfremdet. Alternativ hätte ich vielleicht auch die Batterie aus dem Auto nehmen können, dazu kann ich mich aber nicht durchringen ;-) Also mal das Sammelsurium mit einigen Strippen und Krokoklemmen zusammenstecken – Funktioniert! Mehr als 800 mA bei voll beschienenen Solarzellen ist aber nicht mehr herauszuholen, um den Akku immer wieder mal aufzuladen sollte es ausreichen. Ehe wieder jemand meckert: Mir ist schon klar, dass der Akku nun die einizige Spannungsbegrenzung ist, die Leerlaufspannung des Paneels liegt so um die 19 V, das ist eigentlich zu viel für einen Bleiakku. Aber da lebe ich jetzt einfach mit :mrgreen:

solar_rueckdiodeIch habe keine Ahnung mehr, ob in den Solarpaneelen eine Diode vorhanden ist, um Rückspeisung aus dem Akku zu verhindern. Mal sehen, was sich da so im Keller findet, Schottky wäre schon schön :-D Mehr als eine Hand voll BAT42 ist irgendwie nicht da, pro Stück können diese 200mA verkraften, einfach 5 Stück parallel nehmen…?!? Ist ohnehin nur ein Experiment, wenn improvisieren dann richtig ;-)

Ein wenig Messerei, ein bisschen Paneel verschieben hier und da – es wird mit rund 650 mA geladen. In der Starterbox ist irgendwas um 4 Ah als Akkukapazität verbaut, sollte für ein gelegentliches Aufladen der Mobilgeräte ausreichen, Handy und Co müssen ja nicht dauernd am Kabel hängen.

solar_12-5

12V sind für unsere allseits beliebten (Micro) USB-Ladeports natürlich ein wenig viel, da muss ebenfalls noch etwas Elektronik her. Zum Glück habe ich noch einen „Zigarettenanzünder auf USB“-Adapter (was für eine Bezeichnung…) im Handschuhfach liegen, das sollte doch funktionieren!

Tut es auch! OK, das Z1-Tablet lädt nur, wenn es nicht aktiv ist. Da das Teil aber immer schon etwas zickig ist wenn es um das Aufladen geht, habe ich nichts anderes erwartet. Das Z1 Compact Smartphone hat an der Stelle keine Probleme, es lädt auch während es ein wenig Webradio vor sich hindudelt. Leider gibt der Zigarette/USB Adapter auch nur 900 mA heraus, wahrscheinlich ist dies eher das Problem, als die maximale Leistung der Starterbox. Bis ins Unendliche kann man die Kapazitäten ohnehin nicht ausreizen, schließlich wird mehr Strom entnommen als hinein fließt.

Jetzt müsste könnte man natürlich fragen, ob der Aufwand nicht doch ungleich größer ist als jener, eben die (ohnehin für das Rasenmähen vorhandene) Kabeltrommel nach draußen zu stellen, vom Strippensalat noch nicht einmal gesprochen. Nun ja – so gesehen schon :-D Aber da gibt es eben auch noch den Experimentiervirus, der wohl befriedigt werden will ;-)

Ich bin allerding ernsthaft mit der Überlegung beschäftigt, das Ganze etwas durchdachter und gezielter in Angriff zu nehmen. Mit etwas Planung und geeigneteren Teilen sollte sich eine kleine Insellösung aufbauen lassen, welche den Freizeitstrombedarf im Garten abdecken kann, mehr als Licht und Versorgung der Moilgeräte werde ich sowieso eher nicht benötigen, nebenbei bietet sich so genug Spielraum für kleinere Elektronikexperimente… Aber was ich schon so will…. ^^

Ach ja, habe ich schon darauf hingewiesen, dass dieser Blogbeitrag auf einem Androidgerät geschrieben wurde, welches mit 100% umweldfreundlichem Solarstrom betrieben wurde? Zumindest an diesem Tag :-D Vorsicht, der Akku könnte Energiereste von Netzstrom enthalten :!:


 



 

 

Elektor Elektronik-News – Winziger Stromschalter bis 7 A Elektor

Interessantes Bauteil, wenn man innerhalb einer Schaltung weitere Komponenten schaltbar halten will oder muss:

Elektor Elektronik-News – Winziger Stromschalter bis 7 A Elektor.

7 Ampere sind doch für so ein IC schon eine Hausnummer :-)

 

 



 

Polyswitch, selbst rückstellende Sicherung

Polyswitch_800Ganz von alleine

Jeder Mensch, der sich mit Elektronik in irgendeiner Form auseinandersetzt, kennt die Notwendigkeit von Sicherungen. Sie sind sozusagen gewollte Sollbruchstellen, welche beim Überschreiten einer bestimmten Vorgabe einen Vorgang oder eine Funktion unterbrechen. In der Regel wird in elektrischen Anlagen ein bestimmter Maximalstrom vorgegeben, der in der Einrichtung fließen darf. Wird dieser überschritten, muss abgeschaltet werden.

Gerade bei den im Modellbau und der Kleinleistungselektronik vorkommenden Anwendungen, sind große Ströme über  2-3 Ampere eher selten, dieser Beitrag hier gilt in diesem Szenario, Hausanschlüsse und Kernkraftwerke werden nicht berücksichtigt ;-)

Besonders ärgerlich ist es meist, wenn ein nachvollziehbarer Kurzschluss auftritt, der keinen Systemfehler darstellt, sondern durch Fehlbedienung im weitesten Sinne geschieht. Metallgegenstände, die versehentlich über Akkuanschlüsse gelegt wurden, Modelllokomotiven, die so ungünstig entgleisen, dass ein Kurzschluss entsteht, es gibt reichlich Situationen, in denen ein zu hoher Strom fließen kann. In komplexeren Systemen kann hier eine intelligente Elektronik helfen, welche einen Überstrom feststellt und Gegenmaßnahmen ergreift, bei einfachen Anwendungen, begrenztem Platzangebot oder schlicht zu hohen Kosten scheidet diese Möglichkeit oft aus. Schmelzsicherungen sind auch kein Allheilmittel, der Aufwand für einen Austausch steht häufig in keinem Zusammenhang zur Fehlerursache.

Hier nun kann der Polyswitch gute Dienste leisten. Im Prinzip ist er ein PTC, ein Widerstand, der mit steigender Temperatur seinen Widerstandswert erhöht. Ich will hier nicht auf die Details zu dieser Bauteileart eingehen, das findet sich u. a. auch bei Wikipedia.

Es gibt die Polyswitches mit Auslösewerten von einigen Milliampere bis hin zu einigen Ampere, neuerdings auch mit Spannungsverträglichkeit bis 230V, gängig sind allerdings derzeit die Varianten bis ca. 60V. Bei (zu) hohem Stromfluss erwärmen die Switches sich und werden bei erreichen eines bestimmten Wertes hochohmig (nicht linear), praktisch wird der Verbraucher somit nicht mehr oder nur mit einem sehr geringen Strom versorgt. Sinkt nun die Temperatur, wird der Polyswitch wieder niederohmig, die Schaltung kann erneut arbeiten, die Sicherung hat sich quasi zurückgestellt. Ist der Fehler noch vorhanden, kommt es recht schnell zur Wiederholung des Vorganges. Im Alltag kann man dieses Verhalten auch zum Schutz vor Überhitzung einsetzten, die Wirkung ist gleich.

 

Nachteilig ist natürlich, dass dies keine schnelle Abschaltung ermöglicht. Zum Schutz vor Überlastung an (Modell) Motoren, Lokdecodern, Akkus oder sonstigen Bauteilen, welche eher durch längeren ‚Missbrauch‘ aufgeben, aber eine praktische Sache! In Schaltungen, welche sehr sensibel auf geringe Stromänderungen reagieren, muss unter Umständen berücksichtigt werden, dass sie in kaltem Zustand einen geringen Widerstand von ca. 0,2 Ohm besitzen, abhängig auch von der Umgebungstemperatur. Im Alltag setze ich sie z. B. vor den Lokmotoren am Decoderausgang ein, da es trotz angeblichem Überlastschutz immer wieder mal Fälle von durchgebrannten Decodern bei blockierten Motoren gibt. Selbst bei Lokomotiven, welche sehr präzise eingestellt bzw. eingemessen wurden, habe ich bisher keine feststellbaren Unterschiede im Fahrverhalten bemerkt. Zur Anwendung kommen in dem Falle meist 1000 mA Polyswitches. Sie sind tolerant genug, beim Anfahren auch schwerer Züge nicht gleich abzuschalten, trennen aber sehr gut bei anhaltender Überlast.

FusecheckRecht elegant ist daneben auch die Möglichkeit, eine LED samt Vorwiderstand ‚über‘ der Sicherung anzubringen.

Löst der Polyswitch aus, fällt die komplette Spannung an seinen Anschlüssen ab und die LED signalisiert die Überlast. Klappt im Prinzip bei jeder Sicherung, man muss natürlich auf die anzutreffenden Spannungen achten und auch darauf, dass der Leuchtdiodenstrom alleine nicht schon ausreicht, um die Schaltung vielleicht doch zu aktivieren. Vorsicht eben! Natürlich ginge auch ein Optokoppler, der wieder einen Transistor oder Controller oder… lassen wir das :mrgreen:

 


Finde Dich zurecht, Du bist in dieser Kategorie:
Home » Ampere

 

Besucht mich doch in der Welt der sozialen Medien!

bsky.social facebook instagram pinterest X / Twitter

 

 

   

 

Lampen, LEDs, Helligkeit, Poti, Trimmer…

MFB-Poti-SammlungStell mich ein!

Mit einer gewissen Regelmäßigkeit bekomme ich Mails, in denen über Probleme bei der Einstellung der Helligkeit von LEDs und Glühlampen im Bereich Modellbahn berichtet wird.

In fast allen Fällen liegt die Ursache beim Anschluss des einstellbaren Widerstandes, der fast ausschließlich von den Fragestellern in solchen Anwendungsfällen benutzt wird.

Natürlich gibt es auch ‚edlere‘ Lösungen, um das gewünschte Ergebnis zu erzielen. Die Frage ist eben, ob ein solcher Aufwand lohnt, um einen Wagen oder eine Lok oder sonst was zu beleuchten.

Die typischen Fragen:

Auf Platz 1:

Wenn ich die Helligkeit voll aufdrehe, werden die Leuchtdioden zerstört.

Auf Platz 2:

Mir brennt oft das Poti durch.

Auf Platz 3:

Immer noch zu hell.

Kurz zum Thema durchgebrannte LED:

Sie wird zerstört, weil einfach zu viel Strom geflossen ist. Ich habe an anderer Stelle schon etwas dazu geschrieben und verweise, der Vollständigkeit halber, noch einmal auf den Beitrag. Diese Grundregeln gelten natürlich auch dann, wenn der Widerstand veränderlich ist.

Dies & Das

Zuerst einige Informationen zum Aufbau gängiger Potis bzw. Trimmer.

Nebenbei ist in oder bei der Funktion eigentlich kein Unterschied, es sind eben einstellbare Widerstände. Geläufig ist die Bezeichnung Poti, wenn der Benutzer ständig Zugriff auf das Bauteil besitzt (z. B. mit einer Achse und Bedienknopf) oder einmalig justiert wird und anschließend in dieser Position verbleibt, hier spricht man vom Trimmer.

Es gibt neben der Belastbarkeit und den verwendeten Materialien noch die Charakteristik als Unterscheidungsmerkmal. In der Linearversion (lin,B) ist der Einstellwert gleichmäßig linear über die Schleiffläche verteilt, die lograrithmische (log,A) Variante stellt die Aufteilung eben logarithmisch (welch Wunder :mrgreen: ) zur Verfügung.

trimmer

Das Foto zeigt einen Trimmer in klassischer Bauform.

Hat er beispielsweise einen Wert von 1000 Ohm, sind diese fest zwischen den Beinen „A“ und „C“ zu messen. Dieser Wert wird sich nicht ändern, wenn der Einstellschlitz in der Mitte verdreht wird.

 

Anders sieht dies beim Anschluss „B“ aus. An ihm ist der Schleifer herausgeführt, der mechanisch verschiedene Positionen auf dem Festwiderstand abgreift. Steht der Regler in der Mitte, wird man also rund 500 Ohm zwischen den Punkten „A“/“B“ und auch „B“/“C“ messen.

Verstellt man nun den Winkel mehr in die eine oder andere Richtung, entstehen unterschiedliche Werte. Da sich die 1000 Ohm an sich nicht ändern, wird der Wert sich immer so ändern, dass in der Summe eben diese 1000 Ohm erscheinen. Weiter in Richtung „A“ gedreht, wird der Widerstand zwischen „A“ / „B“ kleiner, zeitgleich „B“/“C“ größer, umgekehrt in der Gegenrichtung.

 

trimmer-schemaIn der schematischen Darstellung lässt sich das Verhalten recht gut erkennen. So wird natürlich auch klar, dass es bei maximaler Einstellung in die ‚falsche‘ Richtung möglich ist, einen Widerstand von annähernd 0 Ohm zu erzeugen, der Schleifer liegt direkt am Einspeisepunkt und die Wirkung ist die gleiche, als hätte man einen einfachen Draht verwendet.

Wird also der Trimmer als Vorwiderstand einer LED genutzt, ist in diesem Fall die Leuchtdiode unter Umständen direkt mit der Versorgungsspannung verbunden – sie wird zerstört. Natürlich kann dies auch passieren, wenn der Wert einfach zu gering eingestellt ist, der Strom zum Leuchtmittel ist zu hoch. Im ungünstigsten Fall kann auch der einstellbare Widerstand gleich mit ruiniert werden.

Ist der nun fließende Strom aus irgendeinem Grund sehr hoch, kann der Übergangspunkt Schleifer/Widerstandsbahn nicht mehr standhalten und wird, zumindest an dieser Stelle, zerstört. Hat es den Schleifer erwischt, kann er nicht mehr vernünftig über die Bahn gleiten und eine sensible Justierung wird nahezu unmöglich.

Womit auch gleich der zweite Punkt zu nennen ist, der den Trimmer killen kann, die maximale Belastung.

Jetzt kann man fragen, wie man mit den paar Lämpchen ein doch recht solides Bauteil wie einen Widerstand kaputt bekommen soll. Nun ja, die Menge macht’s!

Der geschilderte Vorgang ist zwar eher nicht die Regel, kann aber doch vorkommen wie ich sehe. Beschrieben wurde ein Waggon, welcher mit Stromabnahme von den Gleisen versehen ist, welcher auch gleich den Rest des Zuges (also die Wagenbeleuchtung) mit Strom versorgt. Leider konnte nicht mehr sicher geklärt werden, auf welche Weise alles miteinander verschaltet war. Wahrscheinlich waren aber nur der Schleifabgriff und einer der Festanschlüsse eines 470 Ohm Trimmers angeschlossen, also ein einstellbarer Vorwiderstand von 0-470 Ohm.

In den insg. 4 Waggons saßen allerdings keine Leuchtdioden, sondern jeweils 4 Stück der altbekannten Glühlämpchen. Jede dieser Lampen hat wohl eine Stromaufnahme von rund 60 mA. 4 x 4 Lampen x 60 mA = 960 mA Maximalstromaufnahme. OK, der Strom sinkt, wenn der Widerstand steigt, leider liegen keine Messwerte vor. Aber wenn man einmal davon ausgeht, dass bei einem Spannungsabfall am Trimmer von geschätzt 3V und einem Strom von überschlagen 600 mA immer noch eine Leistung von rund 1,8 W  in Wärme umgesetzt werden will, ist das für einen gängigen Trimmer auf Dauer einfach zu viel. Selbst wenn jeder Wagen einen eigenen Einstellwiderstand hätte, kommt doch einiges Zusammen.

Fazit: Auch Kleinvieh macht Mist ;-)

Mit LEDs wäre die Gefahr zwar kleiner, aber immer noch gegeben. Gerade wenn aus Miniaturisierungsgründen SMD-Trimmer genutzt werden, würde ich nicht von 0,5 W Belastbarkeit ausgehen. Bei einer Spannung von 15V DC auf dem Gleis und rund 3V LED Spannung, müssen am Trimmer  12V abfallen. Angenommen durch die Einstellung fließen noch 10 mA/LED, sind das 40 mA x 12V = 480 mW Leistung bei Parallelschaltund der Leuchtdioden und diese dann in Reihe zum Einstellwiderstand. Hat man nun einen 1/4 Watt SMD Trimmer, also max. 250mW, kann man sich leicht ausrechnen, das dies schiefgehen wird. Wahrscheinlich nicht sofort, aber irgendwann…

Zu helles Licht in den Häusern und Wagen…

Tja, die modernen Leuchtdioden… :-D In den meisten Fällen hatten die Schreiber der Mailbeiträge Vorwiderstände um etwa 1 kOhm vor ihren LEDs. Überschlagen sind dies bei 15V auf dem Gleis rund 12 mA, die durch die LED fließen. Bei den aktuellen LED-Typen reicht allerdings ein Bruchteil davon völlig aus. Ich würde, auch im Hinblick auf die Belastung, immer generell einen 2,2 kOhm Widerstand in Reihe zu JEDER LED schalten, dies sorgt auf jeden Fall dafür, dass auch bei voller Spannung keine Zerstörung erfolgen kann. Diese ‚LED+Widerstand‘-Schaltung(en) dann parallel schalten und anschließend in Reihe an einen 10 kOhm Trimmer gelegt, sollten einen brauchbaren Einstellbereich bieten. Noch günstiger ist es, mehrere LEDs in Reihe zu schalten, so wird der Spannungsabfall am Poti reduziert, eine reine Rechengeschichte ;-)

So, dieses zu vielen Worten um ein einfaches Bauteil :-) Ich weiß, dass einige Beispiele am Maximum gewählt sind. Die an mich herangetragenen Nachrichten zeigen mir aber, dass so etwas durchaus vorkommt. Immerhin ist z. B. das ‚Modellbahnen‘ für die meisten Menschen eine Freizeitbeschäftiigung, keine Wissenschaft, dennoch aber sehr stark mit der Elektronik verbunden. Niemand kann aber von jedem Modellbahner verlangen, dass er sämtliche Schaltungskniffe und Bauteile kennt, weil er eben dieses Hobby hat. Nebenbei habe ich für den Interessierten hier noch einige Tipps zum Umgang mit Leuchtdioden.

 

 

Strom, Spannung, Widerstand, Kennzeichnungen – 1

IRUStrom, Spannung und Namen

Bei relativ vielen Anfragen die ich bekomme, werden die Begriffe Strom und Spannung bunt durcheinander gemischt. Nebenbei, in Radio + TV kommt das auch gern‘ vor :-D

Jedenfalls ist es sinnvoll, diese Begriffe richtig einzuordnen. Wenn man selber etwas elektronisches aufbauen möchte und dazu vielleicht auch eine kleinere Berechnung nötig ist, kommt man um ein sauberes trennen der Begriffe nicht herum. Es ist nicht möglich einen Vorwiderstand zu berechnen, wenn der Unterschied zwischen Strom, Spannung und Widerstand nicht klar ist.

In einer der letzten Emails stand z.B. in etwa das folgende:

‚In meiner Platine fließen 12 Volt bei 2 Ampere‘.

Laut mitgesendetem Stromlaufplan war es ein mit dem NE555 aufgebautes Lauflicht. 3x NE 555 mit jeweils 2 LEDs parallel, einfach Schaltung für Schaltung hintereinander geschaltet, kaskadierbar. Kann man so machen, sollte auch funktionieren, braucht aber niemals 2 Ampere, jedenfalls nicht, wenn alles richtig aufgebaut ist. Gemeint war, wie so oft, es stehen 2 A zur Versorgung zur Verfügung. Deswegen benötigt die Schaltung diese aber nicht. Man KANN dann die Stromversorgung bis zu 2 Ampere belasten, das heißt nicht, dass die Elektronik diese auch braucht. Gilt übrigens auch für PC-Netzteile! Ein 400W Netzteil KANN diese Leistung bringen, muss aber nicht. Braucht der PC weniger Strom, wird auch das Netzteil nur das liefern, was benötigt wird.

Jedenfalls ist es dann auch per Ferndiagnose via Email schwierig, den richtigen Faden zu finden. Wenn 2 LEDs 2 Ampere ziehen (mehr als 2 sind nie gleichzeitig in der Schaltung aktiv), denke ich zuerst an Kurzschluss oder ähnliches. War da aber nicht der Fall, es waren einfach falsch verbaute LEDs.

Ich versuche, URI mal aufzudröseln:

  • Die Spannung ist das, was in einer Schaltung zwischen 2 Punkten zur Verfügung steht. Die Betriebsspannung z.B. liegt nach dem Einschalten an. Dort, wo sie in die Schaltung eingespeist wird. Egal, ob schon ein Strom fließt oder nicht. Sie wird in Volt angegeben, in den Formeln kurz ‚U‘.
  • Der Strom fließt innerhalb einer Schaltung. Er kann niemals fließen, wenn kein geschlossener Stromkreis zur Verfügung steht. Würde man z. B. die Leiterbahn unterbrechen, die von den Klemmen der Stromversorgung zur eigentlichen Elektronik führt, wird auch kein Strom durch die Schaltung fließen. Die Spannung würde an den Einspeisepunkten aber trotzdem zur Verfügung stehen. Der Strom wird in Ampere gemessen, in Formeln ‚I‘.
  • Der Widerstand reduziert den Stromfluss! Je höher ein Widerstand ist, desto weniger Strom wird fließen. Das können auch lange oder dünne Leitungen sein, es muss nicht unbedingt der Widerstand als Bauteil sein. Sobald ein Strom durch einen Widerstand fließt, wird vom Eingang zum Ausgang des Widerstandes auch ein Spannungsabfall messbar sein. Das ist physikalisch einfach so, wenn man sich nicht näher mit dem Elektronenfluss beschäftigen möchte, einfach so hinnehmen :-D Der Widerstand hat die Einheit Ohm, Formelzeichen ‚R‘. Zum Thema Rechnen & Elektronik steht auch immer wieder was hier im Blog, einfach die Suche nutzen oder in der Kategorie ‚Elektronik‘ schauen.

O.K., soviel wollte ich gar nicht schreiben. Aber zur Verdeutlichung schicke ich nachher wohl noch einen Artikel hinterher :mrgreen:

 

 

Tipp: LM317T, einfacher Spannungsregler

LM 317 T

Da ich oft auf einstellbare Spannungsquellen zu Bastelzwecken angesprochen werde, hier ein Vorschlag für eine preiswerte Lösung. Für die meisten Modellbauexperimente und Elektronikbasteleien, sollte das Teil eigentlich ausreichen.

LM317T, einfacher Spannungsregler, Fehler, InformationenEr ist schon ein paar Jährchen alt und hat seine Schwächen, reicht aber in vielen Fällen aus:

Das Bauteil

Eigentlich ist er ein integrierter Schaltkreis. Also ein IC, welches eine komplette Spannungsregelung enthält. Braucht man eine einstellbare Ausgangsspannung und kommt mit max. 1,5 Ampere an Strom aus (typabhängig), ist er eine günstige Lösung, welche mit 4-5 externen Bauteilen zufrieden ist, um ein geregeltes Netzteil aufzubauen. Jedenfalls dann, wenn man keine Besonderheiten in die Schaltung einfügt, bzw. davon verlangt.

Link zum Datenblatt!

Eckdaten:

  • 1,2V – 37V Ausgangsspannung (max. ca. 3V unter Eingangsspannung)
  • max. 40V Eingangsspannung
  • max. 1,5 Ampere, je nach Typ
  • interne Strombegrenzung
lm317t_beispiel

Hier eine einfache Beispielschaltung für eine einstellbare Ausgangsspannung von 1,2V – ca. 20V. Geht man von 1 Ampere maximalem Ausgangsstrom aus, liegt man eigentlich immer richtig. Allerdings sollte ein Auge auf die Temperatur des 317 geworfen werden, ein mittlerer Kühlkörper schadet sicher nicht. Vor allem dann, wenn bei gering eingestellter Ausgangsspannung ein höherer Strom fließt. P = U * I!

Wenn man also bei z.B. 24V Eingangsspannung nur 2V am Ausgang benötigt, dabei aber 1A an Strom fließt, sind das immerhin rund 22 W, die das IC da verbraten muss.

LM317T Belegung

 

Ach ja, auf die Anschlüsse achten! Von links nach rechts sind dies:

Adjust, Out, In!

 

 

 

Es gibt natürlich mittlerweile viele Lösungen, die effizienter und auch eleganter arbeiten als der alte 317T., für eine preiswerte und vor allem mit geringem Aufwand zu realisierende Lösung, betrachte ich ihn aber immer noch als gute Wahl.

 

Emails und Erklärungen zu elektronischen Bauteilen

Artikelbild Elektronik Tipps - www.michael-floessel.deSo, nach ein paar Tagen Nachlässigkeit zu dem Thema, habe ich mir mal wieder die Nachrichten im Maileingang vorgenommen.Einiges ist wie immer der Rubrik ‚Vermischtes‘ zuzuordnen, oben in der Liste stehen aber seit ein paar Wochen die Probleme rund um elektronische Bauteile, deren Einsatz und vor allem deren Funktion. Eien extremen Anstieg verzeichne ich nach dem ‚LED Lauflicht‘ Artikel. Sehr viele Blogleser wollen doch mehr als eine LED pro Pin am µController betreiben, der PIC schafft das aber eben nicht bzw. kann/soll nicht so viel Strom liefern.

Ich kann sehr gut verstehen, dass der Frust riesig sein muss, wenn man mit viel Zeit und Mühe eine Schaltung aufgebaut hat und diese am Ende nicht funktioniert. Noch schlimmer, man hat richtig Geld investiert und das Ganze geht in Rauch auf. Ich mache einfach mal eine kleine Aufzählung der Topthemen, also der Probleme, die wenigstens zwei mal aufgeschlagen sind:

  • Transistor schaltet/arbeitet nicht
  • Richtigen Anschlusspin finden
  • Widerstand wird sehr warm
  • Diode blitzt nurkurz auf (1N4148,LED)
  • Elko bekommt dicke Backen/stinkt/wird warm
  • PIC/IC/xxx wird sehr warm
  • Spannung zu hoch, zu niedrig
  • Größeren Verbraucher mit Controller schalten
  • +/- umschalten ohne Schalter, Relais

Das Problem ist natürlich, dass man, um mit Elektronik arbeiten zu können, gewisse Kenntnisse haben muss, um erfolgreich selber nach Bedarf seine Schaltungen bauen zu können. Nun kann aber nicht jeder Modellbahner, Modellbauer, Hobbylöter etc. auch Elektroniker sein oder ‚mal eben‘ eine Ausbildung nachschieben :-) Für die meisten elektronischen Eigenlösungen ist dies aber auch gar nicht nötig. Ein wenig technisches Interesse reicht oft aus.

Aus diesen Gründen werde ich versuchen, hier eine Art Mini-Bauteil-Kurs aufzubauen. Die grundlegenden Funktionen mit, wenn möglich, Tipps zur Fehlervermeidung und auch ein wenig Theorie. Ohne Anspruch auf Perfektion und wahrscheinlich auch mit Beispielen, die einem professionellen Ausbilder die Tränen in die Augen treiben könnten ;-) Es geht ja auch nicht darum, eine Prüfung mit diesem Wissen zu bestehen oder seinen Lebensunterhalt damit zu verdienen, es geht einfach darum, die Bauteile mit denen man werkeln möchte, ein wenig besser kennen zu lernen. Nebenbei findet man vielleicht auch einen Tipp, wie man ein Vorhaben realisieren könnte, das bisher nur an der der passenden Elektronik gescheitert ist. Alles nur im Bereich bis 24V, also nichts wirklich gefährliches. Trotzdem schon einmal der Hinweis: KLICK!

In vielen Büchern und auch während meiner Ausbildung startet das Thema Elektronik oft mit den physikalischen Grundlagen. Elektronen und Protonen, negatives und positives, geladenes und ungeladenes. Diese Dinge lasse ich aus! Wenn man nicht gerade sehr spezielle Vorhaben angehen möchte, spielt z.B. das Wissen über einen P/N Übergang keine große Rolle. Da soll ein Transistor schalten oder verstärken, eine Diode leiten oder sperren. In einigen Fällen geht es nicht ganz ohne Hintergrundtheorie, ich versuche dieses aber so kurz wie möglich zu halten. Wer verstärktes Interesse an der Elektronik verspürt, kann sich ja immer noch tiefer in die Materie einarbeiten, interessante Themen gibt es reichlich.

Die lose und ohne Reihenfolge auftretenden Beiträge kommen übrigens in die Rubrik ‚Tipps und Tricks‘. Wie oft und umfangreich die Beiträge erscheinen werden weis ich noch nicht. Das erstellen der Artikel ist recht aufwändig, auch werden zu vielen Bauteilen mehrere Teilartikel erscheinen, manchmal ist es eben viel Stoff. Ich werde mit dem NPN Transistor beginnen und habe bei der Vorbereitung schon bemerkt, dass diese Themen nicht in 10 Minuten zu behandeln sind.

Bitte nehmt diesen Artikel auch als Ausgleich für die Antworten in den Mails, in denen nur ‚ich versuche mich darum zu kümmern‚ stand :mrgreen: