Der Widerstand: Wer braucht „dicke Dinger“?

Artikelfoto Widerstand - www.michael-floessel.deIch schreibe diesen Artikel vornehmlich wieder für all jene Elektronikbegeisterte, die gerne mit diesem Hobby ihre Freizeit verbringen. Die gerne löten und sich an kleinen Schaltungen erfreuen, welche man eben im eigenen Hobbykeller realisieren kann. Soweit möglich, umgehe ich die tiefe Theorie der Physik. Es geht mir, wie oft, eher darum, etwas Transparenz zu schaffen. Na, zumindest einen kleinen Teil dazu beizutragen ;-)

Ehrlich ist es doch auch so: Um eine LED leuchten zu lassen, muss nicht unbedingt ein Elektronenmodell bemüht werden. Kann man machen, muss man aber nicht. Umgekehrt ist es aber leider auch so, dass ständiges „Try & Error“ eher frustrierend und unter Umständen auch gefährlich ist. Meist kommt man über einen gewissen Grad an Zufallserfolgen nicht hinaus.

Ist auch ziemlich egal, ich schreib‘ das jetzt hier mal auf. Auslöser für den Gedanken diesen Blogpost nun zu tippen, sind mal wieder die Frage- und Kritikmails. Um genau zu sein, eine bestimmte.

Über die Weihnachtstage habe ich erneut die elektrische Post etwas sortiert und bemerkt, dass neben den Leuchtdioden, auch die Widerstände mit einigen Fehleinschätzungen verwendet werden. Im Gegensatz zur LED, quittiert ein Widerstand nicht gleich den Dienst bei fehlerhaftem Einsatz, weshalb falsche Anwendungen oder Dimensionierungen oft unbemerkt bleiben. Die Ausnahme bildet natürlich eine extreme Überlastung, dann haben auch diese Bauelemente keine Chance :-) Die lange Vorgeschichte schreibe ich jetzt übrigens nur, weil ich natürlich wieder die, sicherlich manchmal angebrachten aber zum Artikelumfang unpassenden, Bemerkungen in der Art von „…wer das nicht weiß, sollte die Finger von der Elektronik lassen“ vor mir sehe. Ihr versteht vielleicht, was ich meine…

Leider sind viele Fehlinformationen sehr tief verankert, wie ich mit dem folgendem Beispiel mal anführen möchte.

KFZ Buchse mit USB-AdapterDas Ding mit der Dimensionierung

 

Der Beginn eines längeren Nachrichtenaustausches, war in etwa der folgende Satz: „… da ja die Batterie im Auto so viele Ampere hat, muss ein Widerstand rein, der eben auch sehr groß sein dürfte.“

Planerisch war vom Schreiber der permanente Anschluss eines USB-Ladeadapters beabsichtigt der, parallel zum Zigarettenanzünder, fest angeschlossen werden sollte. Als sozusagen „Spannungsreglung“, hatte der Schreiber einen Hochlastwiderstand in Reihe zum Ladeadapter vorgesehen. Weil die zu ladenden Geräte keine 46 Ampere benötigen und seine Batterie ja immer soviel Power bringt, muss man wohl was gegen den Strom unternehmen. Kern der Frage war eine Bezugsquelle für entsprechende, in den Abmessungen kleine, Hochlastwiderstände. Besser mit noch mehr Power, eben wegen der vielen Ampere. Das der wohl bereits vorhandene Ladeadapter schon alles notwendige mitbringt, ging zunächst völlig unter.

Der Schreiber hatte schon in diversen (Facebook?) Gruppen gefragt, war aber mit den Antworten nicht einverstanden. Ich kann mir natürlich gut vorstellen, was da los war.

Die Fehleinschätzung, dass eine Autobatterie zu viel Strom für orgnungsgemäß betriebene und dafür vorgesehene Geräte liefert, ließ sich noch gut mit Erklärungen korrigieren. Das aber grundsätzlich nicht die Belastungsfähigkeit einzelner Bauteile, der Leitsungsfähigkeit der Stromquelle überlegen sein muss, wollte er mir nicht glauben.

Lediglich die Erkenntnis, dass ja der Ladeadapter schon die Wandlung von 12V zu 5V vornimmt, leuchtete ein. Ebenso der Umstand, dass es doch ein wenig anderer Technik bedarf, wenn die bekannten Adapter größenmäßig durchaus in die geschlossene Faust passen. Pure Widerstände können das nicht sein.

Der Gedankenfehler lag eher bei der Tatsache, dass das Teil eben nicht an der Steckbuchse des Autos, sonder fest verdrahtet montiert werden sollte. Irgendwie war da wohl etwas Verwirrung über die Regelelekronik entstanden. Prinzipiell kam der Fehler eben daher, dass er eigentlich nicht über einen Laderegler, sondern über einen Vorwiderstand nachgegrübelt hat, die von ihm gefundenen Bauteile aber bestenfalls zum Maschinenraum der Titanic gepasst hätten. Da lief dann alles irgendwann durcheinander. Im Grunde sollte eigentlich nur das besagte Ladegerät aus dem Gehäuse entfernt und irgendwo im Fahrzeug montiert werden. Die Diskussion zog sich allerdings über einige Tage hin, immer wieder endete alles mit Fragen zum Vorwiderstand.

Klar, wenn die Grundvoraussetzungen falsch interpretiert werden, kann man sogar mit unpassenden Zahlen zu überprüfbaren Rechenergebnissen kommen.

In der Rechnung des Schreibers, liefert eben die Batterie besagte 46 Ampere bei 12 Volt. USB-Schnittstellen in solchen Ladeadaptern stellen 5V zur Verfügung, sein Adapter maximal 2 Ampere pro Port, 2 Ports besitzt das Teil. Er ging nun von folgendem aus:

12V – 5V = 7V, die zuviel sind. Die Batterie bringt 46 Ampere, bleiben abzüglich der 2 x 2 Ampere für die beiden Ladebuchsen 42 Ampere übrig. U * I = P soll also konkret bedeuten: 7V  * 42 A = 294 Watt. Tja, und er suchte eben Widerstände, die das „verpacken“. Uff! Am Ende ist das Projekt übrigens gescheitert, die eckigen Löcher für die USB-Buchsen waren wohl doch die ärgste Hürde, nun gut.

Um die Sache abzurunden noch eine kleine Erläuterung, wo welcher Wert bei solchen Berechnungen hingehört. Der Stom muss dem entsprechen, was im Maximalfall fließen kann. Daneben ist entscheidend, welche Spannung dann real am Widerstand abfällt.

Einfache LED Schaltung mit VorwiderstandBeispiel:

Eine klassische grüne LED, max. 20mA

Spannung an der LED = 2V

Speisespannung 12V

Spannungsabfall am Vorwiderstand dann folgerichtig 10V

Bei U * I = P, sind dies dann 10V x 0,02A = 0,2W = 200mW. Der klassische 1/4 Watt Widerstand, würde bestens passen. Man muss eben das in die Berechnung einbeziehen, was auch real ist.

Würde der Vorwiderstand so gewählt, dass nur 10mA fließen, wäre auch die Leistung halbiert, welche in dem Widerstand in Wärme umgesetzt wird. Dann sind es eben nur noch 100mW, die das Bauteil an Belastung ertragen muss. Völlig unabhängig davon, ob die Batterie oder das Netzteil nun 1 oder 10 Ampere liefern könnten.

Es käme ja auch niemand auf die Idee, Widerstände in die Zuleitungen zum Fernseher zu installieren, nur weil der Power auf der Leitung, auch für die Waschmaschine ausreicht, oder?

Ich habe schon des öfteren ausführlichere Hinweise zur Berechnung von Bauteilen hier veröffentlicht, zum Abschluss eine kleine Liste, bzw. die Links dazu:

Strom, Spannung, Widerstand, Kennzeichnungen – 1

Strom, Spannung, Widerstand, Kennzeichnungen – 2

Lampen, LEDs, Helligkeit, Poti, Trimmer…

Berechnung des Stromverbrauchs mal zerlegt

Eselsbrücke: Farbcodes auf Widerständen

 

 

 

Elektronik – Der Widerstand – Der Kurzschluss

Ich muss mal ein paar Worte zum Thema „Kurzschluss“ in Text fassen.

Gerade zu meinen Beiträgen über die Vorwiderstände von Leuchtdioden und NPN-Transistoren, werden gerne mal Anfragen gesendet, welche im Kern Missverständnisse bei der Verwendung von Widerständen im Allgemeinen deutlich machen. Oft fehlt auch einfach das Gefühl dafür, in welchen Bereichen der elektrischen Werte man sich bewegt. Sehr oft wird mir pauschal für Probleme der Begriff „Kurzschluss“ entgegengeworfen, da muss man aber gelegentlich etwas differenzierter herangehen.

Konkret ging es in einer Mail um einen Kurzschluss, der immer dann aufgetreten ist, wenn ein Mikrocontroller einen bestimmten Teil einer Schaltung gestartet hat. Der betroffene Part der Steuerung sollte über einen PIC-Controller mehrere Spulen einer Carsystemsteuerung einschalten, dabei brach augenscheinlich die Spannung zusammen, der Controller hat einen Reset durchgeführt und das Spiel begann von vorne. Es wurden Spulen getauscht, Transistoren gewechselt, neue Controller verbaut – keine Besserung. Irgendwann hat der Betreffende mich dann angeschrieben und gefragt, ob ich da helfen könnte. Grundtenor war jedesmal „Beim Einschalten gibt’s immer Kurzschluss…!“.

Später hat sich herausgestellt, dass nicht die Schaltung den Fehler produziert hat, lediglich das Labornetzteil hat sich bei Strömen über 1 Ampere abgeschaltet, was irrtümlich als Kurzschluss gewertet wurde.Leider wurden keine Messungen durchgeführt, eher so eine „Bauteiltausch auf Verdacht“ – Diagnose, die „Try & Error“-Fehlersuche führt aber doch oft zu falschen Rückschlüssen.Mit gezielten Messungen und ein paar Modifikationen haben wir das dann in den Griff bekommen.

Wie auch immer, ein plötzlich auftretender höherer Stromfluss muss nicht immer ein Kurzschluss sein. Im vorliegenden Fall war es völlig ausreichend, die Spulen mit 27 Ohm Vorwiderständen zu versehen und um einige Millisekunden versetzt einzuschalten.,

Es kommt oft einfach auf den Strom an, der zum Zeitpunkt der maximalen Belastung fließen kann und da spielen ja gerne mal Widerstandswerte eine Rolle,

Sind 10 Ohm als Vorwiderstand bei gängigen Versorgungsspannungen von 5V oder 12V für eine LED viel zu wenig, ist dies beim Widerstand von z. B. Glühlampen im Modellbau durchaus ein realer oder sogar hoher Wert. Zusätzlich gibt es oft Verwirrung bei der Einschätzung der Leistungsfähigkeit und des Leistungsbedarfs von verwendeten Netzteilen, gerne auch am und mit dem PC, für ein Labornetzteil bzw. die Stromversorgung im Hobbykeller gilt das natürlich ebenso. Es kommt eben immer darauf an, welche Komponenten ich zu welchem Zweck kombiniere.

Die Berechnung von Widerständen an sich habe ich hier schon erwähnt, vielleicht einfach mal „drüberlesen“… ;-)

Decoder einer Modellbahnlokomotive. Hier war kein kompletter Kurzschluss aufgetreten, der maximale Strom war aber über einen längeren Zeitraum knapp unter dem Limit der Sicherung.

Der Kurzschluss

Nun werfe ich also mal einen Blick auf den Begriff „Kurzschluss“. Was passiert hier?

Mal angenommen, im klassischen Fall einer (2 x 1,5V = 3V) Batterie in einer Taschenlampe ist etwas defekt und ein Stückchen Metall verbindet Plus und Minus der in Reihe geschalteten Batterien direkt.. In diesem Fall wird die Lampe mit ziemlicher Sicherheit dunkel bleiben, obwohl ein Strom fließt bzw. sie eingeschaltet ist.

Warum ist das nun so?

Die Leistungsfähigkeit der Batterie ist begrenzt. Fließt nun durch die Überbrückung der höchstmögliche Strom, können die Batterien die 3V nicht mehr zur Verfügung stellen, die Spannung bricht zusammen. Technisch gesehen hat man der LED oder dem Lämpchen in der Taschenlampe einen sehr niedrigen Widerstand parallel geschaltet, eben das Stück Metall, was den in diesem Fall echten Kurzschluss verursacht. So ein Fitzelchen Blech oder ein verirrtes Stück Kabel hat einen Widerstand von wenigen Milliohm, die Batterie wird überlastet, sie kann ihre Nennspannung von 1,5V pro Zelle einfach nicht mehr liefern.

Hätte man nun eine Stromversorgung, die genügend Leistung bietet, um die 3V aufrecht zu erhalten, würde trotz der fehlerhaften Verbindung, welche den Kurzschluss darstellt, auch die Lampe leuchten. Dummerweise würde man also zunächst keine Fehlfunktion bemerken, die Lampe funktioniert ja. Durch den extremen Stromfluss, bedingt durch den immer noch vorhandenen niedrigen Widerstand an der Fehlerstelle, wird sich diese Stelle aber in kurzer Zeit sehr stark erhitzen, hier wird der elektrische Strom einfach völlig nutzlos in Wärme umgewandelt. Irgendwann passiert dann irgendetwas. Vielleicht verkokelt die ganze Lampe oder die schwächste Stelle in der Kette der elektrisch verbundenen Bauteile gibt auf, wahrscheinlich irgend ein kleines Stückchen dünne Leitung..

Im Idealfall existiert in einem elektrischen Gerät eine Sicherung, die immer dann den Stromkreis öffnet, wenn irgendwo in der Schaltung ein Umstand auftritt, der ein ungewöhnliches Verhalten verursacht. In den meisten Fällen einen zu hohen Stromfluss. Hier würde die Sicherung ansprechen, was bei simplen Lämpchen aber, mangels Beuteil, eher nicht zu erwarten ist. Unter Umständen lohnt es sich vielleicht, bei kleineren Geräten über einen Polyswitch als rückstellende Sicherung nachzudenken ;-)

In der umgekehrten Situation kann es aber auch durchaus Kurzschlüsse geben, die nicht sofort bemerkt werden. Gerade bei durchgescheuerten Leitungen oder in schmutzigen Umgebungen sind die leitenden Materialien nicht immer metallisch blank. Hier berühren sich zwar die Leiter, durch Schmutz oder auch Oxydation ist aber ein unberechenbarer Widerstand entstanden, welcher das eigentliche Gerät an sich problemlos funktionieren lässt, trotz allem aber ein Kurzschluss vorhanden ist. Meist bemerkt man eher einen bedenklichen Geruch, kann aber bis zum Totalausfall (gerne auch auftretendem Rauch) nichts feststellen.Im Prinzip ist hier der Kurzschluss eben nicht um 0 Ohm herum zu suchen, er liegt irgendwo in einem kritischen Bereich, welcher aber die hoffentlich vorhandenen Sicherungsmaßnahmen nicht auslösen lässt. Im Zweifel kann hier eine Messung der Stromaufnahme helfen, sollte der Verdacht eines Fehlers vorhanden sein.

Lange Rede, kurzer Sinn: Nicht jeder Fehler ist ein Kurzschluss, nicht jeder Kurzschluss führt zum Fehlverhalten :-)

 

 

 

 

Strom, Spannung, Widerstand, Kennzeichnungen – 2

So, nun der nächste Teil zu dem Beitrag hier.

Bitte haltet mich nicht für arrogant, ich möchte mit solchen Blogbeiträgen einfach nur versuchen, einem Elektronikfan Tipps zu geben, um erfolgreich seinem Hobby nachzugehen ohne allzuviel Theorie mit sich herum zu schleppen. Es ist aber schwierig Erfolge zu verbuchen, wenn man bestimmte Grundkenntnisse nicht hat. Beschreibt mal jemandem das Autofahren, der den Unterschied zwischen Gas und Bremse nicht kennt ;-) Wer keine Erfolge in seinem Hobby verbuchen kann, wird schnell frustriert aufgeben, das wäre schade!

Zum eigentlichen Thema! Wenn benötigt, gehe ich übrigens in den Beispielen immer von einer Betriebsspannung von 12V bei einem maximalen Strom von 1A aus.

Strommessung - - www.michael-floessel.de

Dieses kleine Schaltbild soll mal eine einfache Strommessung darstellen und den Stromfluss verdeutlichen. Der Strom würde vom Pluspol durch das Messgerät und den Widerstand zum Minuspol fließen. An +/- liegt währenddessen die Spannung von 12V an. Je höher der Widerstandswert ist, desto weniger Strom wird fließen. Die Baugröße des Widerstandes hat übrigens in der Realität wenig mit dessen Widerstandswert zu tun, eher mit der Leistung, die er ‚verbraten‘ kann. Egal ob mann nun den Widerstand oder das Messgerät entfernt oder die Verbindung kappt, der Stromfluss wäre unterbrochen. An +/- würde aber trotzdem die Versorgungspannung anliegen. Auch wenn der Widerstand bei mehren 1000 Ohm liegt, werden die 12V unverändert an den Eingängen zu messen sein, ebenso wenn der Widerstandswert sehr klein ist. Lediglich wenn die Stromversorgung überfordert ist, wird irgendwann auch die Eingangsspannung zusammenbrechen, davon gehe ich in den Beispielen aber nicht aus. Eine Strommessung muss also immer innerhalb des fließenden Stromes stattfinden. In der Praxis kann es durchaus vorkommen, dass man zu diesem Zweck mal ein Bauteil auslöten oder eine Leiterbahn unterbrechen muss. Es gibt allerdings mittlerweile auch Messgeräte, die den Strom u. U. ohne Eingriff in die Schaltung erfassen können, kommt auf die Gegebenheiten an.

Spannungsmessung - - www.michael-floessel.de

Im Unterschied zur Strommessung wird die Spannung an den jeweiligen Bezugspunkten gemessen. Hier im Bild einfach an + und -. Zusätzlich ist rechts ein Taster ‚T‘ zu erkennen. So wie er jetzt gezeichnet ist, kann kein Strom fließen. Die Spannung wäre aber an +/- trotzdem zu messen. Beim Drücken von ‚T‘ würde wieder ein Strom fließen, die Spannung an +/- würde sich dadurch aber nicht ändern. Wenn man nun das Amperemeter aus dem ersten Bild in der gezeigten Weise in die Schaltung einfügt, würde bei geschlossenem ‚T‘ ein Stromfluss angezeigt werden. Wie hoch dieser ist, wird durch den Widerstand in der Schaltung festgelegt.

Innerhalb einer Schaltung gibt es natürlich dann auch wieder verschiedene Stellen, an denen man bestimmte Details messen kann. Hier ändern sich natürlich die Bezugspunkte und auch die Werte, die man erwarten kann. Dazu schreibe ich bei Zeiten aber noch einiges mehr ;-) Mit diesen Beispielen hier würde man die Gesamtstromaufnahme und die Betriebsspannung einer Schaltung messen.

Also nochmal als Zusammenfassung:

  • Strom, gemessen in Ampere, Formelzeichen ‚I‘, fließt durch die Bauteile.
  • Spannung, gemessen in Volt, Formelzeichen ‚U‘, liegt an den Bezugspunkten an.
  • Widerstand, gemessen in Ohm, Formelzeichen ‚R‘, wird durch vorgegebene Werte festgelegt.

 

Strom, Spannung, Widerstand, Kennzeichnungen – 1

IRUStrom, Spannung und Namen

Bei relativ vielen Anfragen die ich bekomme, werden die Begriffe Strom und Spannung bunt durcheinander gemischt. Nebenbei, in Radio + TV kommt das auch gern‘ vor :-D

Jedenfalls ist es sinnvoll, diese Begriffe richtig einzuordnen. Wenn man selber etwas elektronisches aufbauen möchte und dazu vielleicht auch eine kleinere Berechnung nötig ist, kommt man um ein sauberes trennen der Begriffe nicht herum. Es ist nicht möglich einen Vorwiderstand zu berechnen, wenn der Unterschied zwischen Strom, Spannung und Widerstand nicht klar ist.

In einer der letzten Emails stand z.B. in etwa das folgende:

‚In meiner Platine fließen 12 Volt bei 2 Ampere‘.

Laut mitgesendetem Stromlaufplan war es ein mit dem NE555 aufgebautes Lauflicht. 3x NE 555 mit jeweils 2 LEDs parallel, einfach Schaltung für Schaltung hintereinander geschaltet, kaskadierbar. Kann man so machen, sollte auch funktionieren, braucht aber niemals 2 Ampere, jedenfalls nicht, wenn alles richtig aufgebaut ist. Gemeint war, wie so oft, es stehen 2 A zur Versorgung zur Verfügung. Deswegen benötigt die Schaltung diese aber nicht. Man KANN dann die Stromversorgung bis zu 2 Ampere belasten, das heißt nicht, dass die Elektronik diese auch braucht. Gilt übrigens auch für PC-Netzteile! Ein 400W Netzteil KANN diese Leistung bringen, muss aber nicht. Braucht der PC weniger Strom, wird auch das Netzteil nur das liefern, was benötigt wird.

Jedenfalls ist es dann auch per Ferndiagnose via Email schwierig, den richtigen Faden zu finden. Wenn 2 LEDs 2 Ampere ziehen (mehr als 2 sind nie gleichzeitig in der Schaltung aktiv), denke ich zuerst an Kurzschluss oder ähnliches. War da aber nicht der Fall, es waren einfach falsch verbaute LEDs.

Ich versuche, URI mal aufzudröseln:

  • Die Spannung ist das, was in einer Schaltung zwischen 2 Punkten zur Verfügung steht. Die Betriebsspannung z.B. liegt nach dem Einschalten an. Dort, wo sie in die Schaltung eingespeist wird. Egal, ob schon ein Strom fließt oder nicht. Sie wird in Volt angegeben, in den Formeln kurz ‚U‘.
  • Der Strom fließt innerhalb einer Schaltung. Er kann niemals fließen, wenn kein geschlossener Stromkreis zur Verfügung steht. Würde man z. B. die Leiterbahn unterbrechen, die von den Klemmen der Stromversorgung zur eigentlichen Elektronik führt, wird auch kein Strom durch die Schaltung fließen. Die Spannung würde an den Einspeisepunkten aber trotzdem zur Verfügung stehen. Der Strom wird in Ampere gemessen, in Formeln ‚I‘.
  • Der Widerstand reduziert den Stromfluss! Je höher ein Widerstand ist, desto weniger Strom wird fließen. Das können auch lange oder dünne Leitungen sein, es muss nicht unbedingt der Widerstand als Bauteil sein. Sobald ein Strom durch einen Widerstand fließt, wird vom Eingang zum Ausgang des Widerstandes auch ein Spannungsabfall messbar sein. Das ist physikalisch einfach so, wenn man sich nicht näher mit dem Elektronenfluss beschäftigen möchte, einfach so hinnehmen :-D Der Widerstand hat die Einheit Ohm, Formelzeichen ‚R‘. Zum Thema Rechnen & Elektronik steht auch immer wieder was hier im Blog, einfach die Suche nutzen oder in der Kategorie ‚Elektronik‘ schauen.

O.K., soviel wollte ich gar nicht schreiben. Aber zur Verdeutlichung schicke ich nachher wohl noch einen Artikel hinterher :mrgreen:

 

 

Eselsbrücke: Farbcodes auf Widerständen

Artikelfoto Widerstand - www.michael-floessel.deStützen für’s Gehirn

Wenn man wenig Übung hat, kann es vorkommen, dass die Bestimmung eines Widerstandwertes anhand der Farbkennung länger dauert, als diesen einzulöten :-D

Gerade, wenn mehrere Exemplare aus einer Wühlkiste zusammengesucht werden müssen, kann das richtig nerven und auch reichlich Zeit beanspruchen.

 

Eine Alternative zum Lernen kann ich auch nicht bieten

Allerdings gibt eine Eselsbrücke, welche das Lernen der Farben (vielleicht) erleichtert.

  • 1 = braun = Ein brauner Pfennig (jetzt wohl Cent :-D)
  • 2 = rot = Zwei rote Lippen
  • 3 = orange = Drei orange Orangen (Geistreich, nicht?)
  • 4 = gelb = Vier Räder an einem gelben Postauto
  • 5 = grün = Ein grüner Fünf Markschein (Äh, nochmal Euro!)
  • 6 = blau = Eine blaue Fliege, hat sechs Beine
  • 7 = violett = Sieben violette Veilchen (OK, hinkt ein wenig, der Vergleich
  • 8 = grau = Ein Achtzig jähriger hat graue Haare
  • 9 = weiß = Neunundvierzig weiße Lottokugeln
  • 0 = schwarz = Kein Vergleich bekannt, kann man sich aber auch so merken, oder? (Hier habe ich den Text aufgrund der Farbgebung des Blogs natürlich nicht geändert ;-) )

Ein kleiner Tipp von Leser Burkhard:
für Schwarz/0: Ein schwarzes Nichts ;-)

OK, mir hat’s seinerzeit geholfen! Da kann ich mal wieder sehen, wie lange das her ist, werde ich alt?