Bei ‚Stay at Home‘: Der Blick auf den Strom! | desasterkreis.de

Bei ‚Stay at Home‘: Der Blick auf den Strom!Nebeneffekte

Was eben noch so als Begleiterscheinung einer Situation auftritt, wenn viele Menschen mehr Zeit in den eigenen vier Wänden verbringen. Beschrieben bei desasterkreis.de.

„Der Stromzähler Gerade eben, ist hier ein neuer Stromzähler ins Haus gekommen. Muss ja auch mal sein, so ein neues Gerät. Vermutlich jedenfalls, die Idee ist ja nicht von mir. Natürlich muss man si…

Quelle: desasterkreis.de – Bei ‚Stay at Home‘: Der Blick auf den Strom!

 

 

 

 

 

Das Dilemma mit dem Messen: Der Strom

Strom messen Bild 3Das Problem mit den falschen Werten

Ich bekomme ja des Öfteren Fragen, zu den unterschiedlichsten Elektronik-Projekten, an denen die Menschen so werkeln. Der Löwenanteil hängt inhaltlich mit Fehlfunktionen von Selbstbauten zusammen, meist schon bei der Inbetriebnahme. Da man gerade so aus der Ferne nur Glaskugellesen betreibt, sind Messwerte mit das Wichtigste, was bekannt sein sollte.

Nach all den Jahren habe ich für mich die Erkenntnis gewonnen, dass ein sehr großer Teil der Schwierigkeiten daher kommt, dass es Probleme bei der Messung des real fließenden Stroms gibt. Oft werden Strom und Spannung verwechselt, ich habe da ja auch schon einiges zu geschrieben. Natürlich muss auch der Umgang mit dem Multimeter zielsicher sein, am Ende liegen ansonsten eine ruinierte Schaltung und auch ein defektes Messgerät auf dem Tisch. Das Thema Multimeter ist hier im Blog schon beschrieben, im Internet findet sich auch noch reichlich Stoff zu der Materie.

Hier geht es mir nun darum, anhand eines sehr einfachen Beispiels nochmals zu erläutern, an welcher Stelle gemessen werden muss und wo dabei die Messspitzen anzusetzen sind. Ganz wichtig ist natürlich auch die Einstellung des Messgerätes.

Den Strom direkt messen

Im Bild ist ein einfacher Stromkreis zum Betrieb einer Leuchtdiode skizziert.

Ausgehend von der Stromquelle UB, fließt der Strom durch den Widerstand R1, zur LED D1 und schließlich wieder zurück. Man kann unschwer erkennen, dass eine Unterbrechung dieser Reihe dafür sorgt, dass die LED erlischt, der Stromkreis ist schließlich unterbrochen.

Strom messen Bild 2Genau diese Unterbrechung ist nun auch notwendig, um den Strom zu messen, der in der Schaltung unterwegs ist. Da es sich hier um eine Reihenschaltung handelt, ist es eigentlich völlig egal, an welchem Punkt die Unterbrechung erfolgt, der Strom ist an jeder Stelle der Gleiche. Er geht nicht verloren, er verrichtet lediglich Arbeit und fließt exakt wieder raus, wie herein. Dieser Schnitt bzw. so eine Unterbrechung, ist immer notwendig, wenn der Strom direkt gemessen werden soll, anders geht es nicht! Jedenfalls dann nicht, wenn man mit einem klassischen Multimeter und zwei Messspitzen ans Werk geht, was wohl beim Großteil der Messungen im privaten Bereich, der Fall sein dürfte.

Strom messen Bild 3Wie nun genau mit dem Messgerät zu verfahren ist, kann an dieser Stelle nur grob aufgezeigt werden. Manch günstiges Multimeter besitzt vielleicht gar keinen Strommessbereich, dann ist die direkte Messmethode so nicht möglich! Am Sichersten ist ein Blick ins Handbuch, es gibt mittlerweile zu viele Modell-Varianten, für einen zuverlässigen Hinweis.

Bei Unsicherheiten zum Umgang mit dem Messgerät weise ich noch mal auf den weiter oben verlinkten Artikel zum Thema „Multimeter“ hin, viele Fragen sind vielleicht dort schon beantwortet.

Da hier jetzt davon ausgegangen wird, dass das benutzte Messgerät Ströme messen kann (wäre ja auch blöd für so einen Artikel, wenn das nicht ginge, oder? ;-) ), muss man sich evtl. für einen Messbereich entscheiden. Hier hilft oft wirklich nur ein Blick in das Handbuch oder gegebenenfalls auf den Ein-/Wahlschalter, um festzustellen, welcher maximale Strom in den einzelnen Messbereichen gemessen werden kann und vor allem darf!

Da so eine Leuchtdiode im Allgemeinen nur einige Milliampere benötigt, würde wahrscheinlich ein Messbereich mit einem Maximum vom vielleicht 250 mA ausreichen. Ist aber ein Fehler in der Schaltung oder es besteht der Verdacht auf einen Kurzschluss, empfiehlt es sich, mit dem größten Bereich zu beginnen, um das Multimeter zu schützen. Bei den gängigen Geräten dürfte dies der 10 Ampere Bereich sein.

Um nun zu messen, müssen die Messleitungen in die entsprechenden Buchsen am Messgerät gesteckt werden. Welche das sind, muss wieder der Beschriftung oder der Anleitung entnommen werden, passend zum gewählten Messbereich.

Gehen wir nun davon aus, dass die Unterbrechung des Stromkreises zwischen den Punkten C und D im Bild liegt. Der Punkt C wird verbunden mit dem GND Anschluss, dies ist die negativste Stelle in der Messchaltung.

Wird der 10 A Bereich für die zweite Messspitze genutzt, kommt die Leitung in die entsprechende Buchse und die Spitze zum Messen an Punkt D. Im Milliamperebereich muss die Buchse natürlich, entsprechend dem Multimeter, evtl. gewechselt werden. Moderne Messgeräte erkennen die Polarität automastisch, hat man + und – vertauscht, ist dies für die Messung nicht kritisch, im Display wird höchstens ein – angezeigt. Sollte allerdings ein analoges Gerät genutzt werden, wird der Zeiger in die falsche Richtung ausschlagen.

Natürlich ist in diesem Beispiel das Auftrennen der Leitungen eigentlich Unfug. Selbst die Leitungen, welche die Schaltung mit Strom versorgen, sind ja Teil der Reihenschaltung und es ist natürlich wesentlich weniger umständlich, die Verbindung von der Stromquelle zur Schaltung zu trennen, als auf einer Platine, die Bahnen zu zerschneiden.

Zum Messen muss natürlich auch ein Strom fließen, einschalten also nicht vergessen ;-)

Vorsicht! Auch wenn es hier im Beispiel nur um eine LED mit harmlosen Strömchen geht, kann bei anderen Schaltungen durchaus gefährliches Potential vorhanden sein! Im Zweifel: Finger weg!

Indirekte Messung

Möchte man nun unter allen Umständen das Auftrennen der Leitungen vermeiden, könnte im gezeigten Beispiel, auch die indirekte Messung genutzt werden. In diesem Fall reicht es aus, die Spannung über dem Widerstand zu messen und durch den Wert eben dieses Widerstandes zu teilen. Die Spannung in Volt, geteilt durch den Widerstandswert in Ohm, ergibt den Strom in Ampere.

Auch hier: Vorsicht! Die indirekte Messung ist eine Spannungsmessung (Volt)! Sollte das Multimeter noch auf einen Strommessbereich (Ampere!) eingestellt sein, bedeutet dies eine sehr niederohmige Verbindung bei der Messung. Der Widerstand würde dann praktisch überbrückt und die LED den vollen Strom abbekommen, was sie höchstwahrscheinlich nicht überstehen dürfte.

Wie immer: Seid vorsichtig und viel Erfolg!

 

 

Der Widerstand: Wer braucht „dicke Dinger“?

Artikelfoto Widerstand - www.michael-floessel.deIch schreibe diesen Artikel vornehmlich wieder für all jene Elektronikbegeisterte, die gerne mit diesem Hobby ihre Freizeit verbringen. Die gerne löten und sich an kleinen Schaltungen erfreuen, welche man eben im eigenen Hobbykeller realisieren kann. Soweit möglich, umgehe ich die tiefe Theorie der Physik. Es geht mir, wie oft, eher darum, etwas Transparenz zu schaffen. Na, zumindest einen kleinen Teil dazu beizutragen ;-)

Ehrlich ist es doch auch so: Um eine LED leuchten zu lassen, muss nicht unbedingt ein Elektronenmodell bemüht werden. Kann man machen, muss man aber nicht. Umgekehrt ist es aber leider auch so, dass ständiges „Try & Error“ eher frustrierend und unter Umständen auch gefährlich ist. Meist kommt man über einen gewissen Grad an Zufallserfolgen nicht hinaus.

Ist auch ziemlich egal, ich schreib‘ das jetzt hier mal auf. Auslöser für den Gedanken diesen Blogpost nun zu tippen, sind mal wieder die Frage- und Kritikmails. Um genau zu sein, eine bestimmte.

Über die Weihnachtstage habe ich erneut die elektrische Post etwas sortiert und bemerkt, dass neben den Leuchtdioden, auch die Widerstände mit einigen Fehleinschätzungen verwendet werden. Im Gegensatz zur LED, quittiert ein Widerstand nicht gleich den Dienst bei fehlerhaftem Einsatz, weshalb falsche Anwendungen oder Dimensionierungen oft unbemerkt bleiben. Die Ausnahme bildet natürlich eine extreme Überlastung, dann haben auch diese Bauelemente keine Chance :-) Die lange Vorgeschichte schreibe ich jetzt übrigens nur, weil ich natürlich wieder die, sicherlich manchmal angebrachten aber zum Artikelumfang unpassenden, Bemerkungen in der Art von „…wer das nicht weiß, sollte die Finger von der Elektronik lassen“ vor mir sehe. Ihr versteht vielleicht, was ich meine…

Leider sind viele Fehlinformationen sehr tief verankert, wie ich mit dem folgendem Beispiel mal anführen möchte.

KFZ Buchse mit USB-AdapterDas Ding mit der Dimensionierung

 

Der Beginn eines längeren Nachrichtenaustausches, war in etwa der folgende Satz: „… da ja die Batterie im Auto so viele Ampere hat, muss ein Widerstand rein, der eben auch sehr groß sein dürfte.“

Planerisch war vom Schreiber der permanente Anschluss eines USB-Ladeadapters beabsichtigt der, parallel zum Zigarettenanzünder, fest angeschlossen werden sollte. Als sozusagen „Spannungsreglung“, hatte der Schreiber einen Hochlastwiderstand in Reihe zum Ladeadapter vorgesehen. Weil die zu ladenden Geräte keine 46 Ampere benötigen und seine Batterie ja immer soviel Power bringt, muss man wohl was gegen den Strom unternehmen. Kern der Frage war eine Bezugsquelle für entsprechende, in den Abmessungen kleine, Hochlastwiderstände. Besser mit noch mehr Power, eben wegen der vielen Ampere. Das der wohl bereits vorhandene Ladeadapter schon alles notwendige mitbringt, ging zunächst völlig unter.

Der Schreiber hatte schon in diversen (Facebook?) Gruppen gefragt, war aber mit den Antworten nicht einverstanden. Ich kann mir natürlich gut vorstellen, was da los war.

Die Fehleinschätzung, dass eine Autobatterie zu viel Strom für orgnungsgemäß betriebene und dafür vorgesehene Geräte liefert, ließ sich noch gut mit Erklärungen korrigieren. Das aber grundsätzlich nicht die Belastungsfähigkeit einzelner Bauteile, der Leitsungsfähigkeit der Stromquelle überlegen sein muss, wollte er mir nicht glauben.

Lediglich die Erkenntnis, dass ja der Ladeadapter schon die Wandlung von 12V zu 5V vornimmt, leuchtete ein. Ebenso der Umstand, dass es doch ein wenig anderer Technik bedarf, wenn die bekannten Adapter größenmäßig durchaus in die geschlossene Faust passen. Pure Widerstände können das nicht sein.

Der Gedankenfehler lag eher bei der Tatsache, dass das Teil eben nicht an der Steckbuchse des Autos, sonder fest verdrahtet montiert werden sollte. Irgendwie war da wohl etwas Verwirrung über die Regelelekronik entstanden. Prinzipiell kam der Fehler eben daher, dass er eigentlich nicht über einen Laderegler, sondern über einen Vorwiderstand nachgegrübelt hat, die von ihm gefundenen Bauteile aber bestenfalls zum Maschinenraum der Titanic gepasst hätten. Da lief dann alles irgendwann durcheinander. Im Grunde sollte eigentlich nur das besagte Ladegerät aus dem Gehäuse entfernt und irgendwo im Fahrzeug montiert werden. Die Diskussion zog sich allerdings über einige Tage hin, immer wieder endete alles mit Fragen zum Vorwiderstand.

Klar, wenn die Grundvoraussetzungen falsch interpretiert werden, kann man sogar mit unpassenden Zahlen zu überprüfbaren Rechenergebnissen kommen.

In der Rechnung des Schreibers, liefert eben die Batterie besagte 46 Ampere bei 12 Volt. USB-Schnittstellen in solchen Ladeadaptern stellen 5V zur Verfügung, sein Adapter maximal 2 Ampere pro Port, 2 Ports besitzt das Teil. Er ging nun von folgendem aus:

12V – 5V = 7V, die zuviel sind. Die Batterie bringt 46 Ampere, bleiben abzüglich der 2 x 2 Ampere für die beiden Ladebuchsen 42 Ampere übrig. U * I = P soll also konkret bedeuten: 7V  * 42 A = 294 Watt. Tja, und er suchte eben Widerstände, die das „verpacken“. Uff! Am Ende ist das Projekt übrigens gescheitert, die eckigen Löcher für die USB-Buchsen waren wohl doch die ärgste Hürde, nun gut.

Um die Sache abzurunden noch eine kleine Erläuterung, wo welcher Wert bei solchen Berechnungen hingehört. Der Stom muss dem entsprechen, was im Maximalfall fließen kann. Daneben ist entscheidend, welche Spannung dann real am Widerstand abfällt.

Einfache LED Schaltung mit VorwiderstandBeispiel:

Eine klassische grüne LED, max. 20mA

Spannung an der LED = 2V

Speisespannung 12V

Spannungsabfall am Vorwiderstand dann folgerichtig 10V

Bei U * I = P, sind dies dann 10V x 0,02A = 0,2W = 200mW. Der klassische 1/4 Watt Widerstand, würde bestens passen. Man muss eben das in die Berechnung einbeziehen, was auch real ist.

Würde der Vorwiderstand so gewählt, dass nur 10mA fließen, wäre auch die Leistung halbiert, welche in dem Widerstand in Wärme umgesetzt wird. Dann sind es eben nur noch 100mW, die das Bauteil an Belastung ertragen muss. Völlig unabhängig davon, ob die Batterie oder das Netzteil nun 1 oder 10 Ampere liefern könnten.

Es käme ja auch niemand auf die Idee, Widerstände in die Zuleitungen zum Fernseher zu installieren, nur weil der Power auf der Leitung, auch für die Waschmaschine ausreicht, oder?

Ich habe schon des öfteren ausführlichere Hinweise zur Berechnung von Bauteilen hier veröffentlicht, zum Abschluss eine kleine Liste, bzw. die Links dazu:

Strom, Spannung, Widerstand, Kennzeichnungen – 1

Strom, Spannung, Widerstand, Kennzeichnungen – 2

Lampen, LEDs, Helligkeit, Poti, Trimmer…

Berechnung des Stromverbrauchs mal zerlegt

Eselsbrücke: Farbcodes auf Widerständen

 

 

 

Parallel geschaltete Leuchtdioden

grüne LED druchgebrannt - www.michael-floessel.deIch bin gerade die elektrische Post der letzten Wochen durchgegangen und wollte mal wieder so eine Art „Top 10“ der elektronischen Themen verfassen, zu denen ich hier über den Blog angesprochen wurde.

Mir ist dabei aufgefallen, dass die Frage nach dem parallelen Anschließen von Leuchtdioden immer wieder aufkommt, verstärkt zur Weihnachtszeit. Klar, wann bietet sich eine kleine Experimentiererei mehr an, als zur Jahreszeit der stimmungsvollen Beleuchtung?  :-)

Nun, geschrieben habe ich dazu ja schon ein paar Zeilen, ich verweise an dieser Stelle einfach per Link auf den Artikel.

Zusammengefasst ist davon abzuraten, LEDs einfach parallel aneinanderzupacken. Leuchtdioden sind aktive Bauelemente, keine simplen Glühlampen. Selbst Exemplare aus der gleichen Charge unterliegen Toleranzen, welche zu Abweichungen in der Kennlinie führen. Bei Autoreifen nimmt man ja auch Rücksicht auf jeden einzelnen, selbst wenn alle aus der gleichen Serie sind. Ich weiß, der Vergleich hinkt ;-)

 

 

Stromsparen im Haushalt – Tipps & Ideen

Beispielbild zu einem Artikel auf www.michael-floessel.de - Energiekosten PCAufgrund der aktuellen Entwickung der Stromkosten habe ich beschlossen, mal einen älteren Artikel aus dem Blog etwas nach oben zu holen. Wer mich näher kennt weiß, daß ich nicht erst seit ein paar Wochen ziemlich sauer auf das reagiere, was dem Bürger und Verbraucher da an Verpflichtungen bei den Energiekosten aufgezwungen wird.

Als Reaktion auf mein Gemecker, habe ich eigentlich eher mit negativem Feedback in der Art von ‚Jammer nicht‘, ‚da musst Du durch‘ und schlimmerem ähnlichem gerechnet. Immer wirder kommen aber Anfragen zu mir, die inhaltlich Tipps zum Stromsparen wünschen. Übrigens deutlich mehr, als bisher zu allen anderen Artikeln hereingekommen ist.

Freut mich natürlich :-D

Nun ist es ja so, daß die meisten der allgemeinen Tipps schon an vielen Stellen gegeben wurden. Ich werde also mal wieder meinen Senf dazu beitragen, natürlich incl. der Vorschläge, die ohnehin schon jeder kennen dürfte…

Tipps zum Strom sparen:

  • Stationäre PC’s weg, Notebooks anschaffen. Vorzugsweise dann, wenn ohnehin etwas neues fällig ist.
  • Aquarium abschaffen
  • Wäsche nur so heiß waschen, wie wirklich nötig
  • Wärmetauscher am Kühlschrank reinigen, also das Gitter an der Rückseite
  • Kühlschrank regelmäßig abtauen und auf die wirklich notwendige Stufe stellen
  • Deckel beim Kochen auf die Töpfe
  • Glühlampen gegen sparsameres tauschen, vorzugsweise LEDs (dazu kommt in meinem Blog auch noch einiges!)
  • Abschaltbare Steckdosen an alles, was auch ohne Dauerstrom auskommt. Die meisten Unterhaltungsgeräte aus der Jubelelektronik speichern auch ohne Strom die letzten Einstellungen. Wenn nicht, irgendwann ersetzen.
  • Raumbeleuchtung auf Werte reduzieren, die man wirklich braucht. 120 Watt Gesamtleistung bei Halogenstrahlern im 2 Meter langen Korridor sind nicht immer wirklich sinnvoll.
  • Ladegeräte bei Nichtbenutzung aus der Steckdose ziehen. Oder alle zusammen an eine schaltbare Leiste, dann komplett abschalten. Geht natürlich nur, wenn immer alles zusammen geladen wird.
  • Statt Backofen oder Herd die Mikrowelle nutzen, wenn das möglich ist. Hier aber darauf achten, das die Nutzungszeit der Mikrowelle nicht so lang wird, das er Ofen wieder günstiger wird. Mir wurde berichtet, das es Leute gibt die z.B. Wasser für Tee in der Welle erhitzen, ich habe das aber noch nicht näher betrachtet.
  • Wäschetrockner auf Bedarf prüfen. Sicherlich eine feine Sache, so ein Trockner… Aber auch ein Luxusproblem. An sich trocknet Wäsche gut kostenlos ;-)
  • In Haushalten, in denen mehrfach am Tag gekocht wird schauen, ob man die Essenszeiten nicht verlegen kann. Hat bei unserer 5-Kopf-Bande gut funktioniert. Nicht immer, aber oft genug.
  • An Stellen, die gerne vergessen werden prüfen, ob man evtl. eine Zeitschaltuhr installieren kann, die immer dann ausschaltet, wenn ein Geräte garantiert nicht gebraucht wird. Z.B. Kellerlicht zwischen 23 und 8 Uhr morgens. Aber keine Stolperfallen bauen!
  • Tiefkühltruhe(n) auf Bedarf prüfen. Oft ist der Strom teuer, als das, was man durch die Vorratshaltung einsparen kann.
  • Röhrengeräte (Fernseher und Monitore) gegen aktuelle mit LED Beleuchtung austauschen. Aber hier auf die Leistungsaufnahme achten. Ältere und auch sehr große Geräte sparen nicht unbedingt was ein!
  • Schaut mal in die Zimmer Eurer Kinder, sofern vorhanden! Kinder mein ich, nicht nur Zimmer. Ein „PC + Fernseher + Konsolen + Stereoanlage + Lichter = ALLES AN – Szenario“ ist nicht selten. Ich weiß, wovon ich rede :shock:

Dies sind fast alles Tipps, die wir hier, nach und nach, befolgt haben. Unter dem Strich hat dieses Verhalten im Laufe der Jahre rund 2000 kWh eingespart. Wenn ich bis zum Jahr 1996 zurück gehe, sind es sogar 2500 kWh, die heute weniger gebraucht werden. Natürlich spielt auch eine Rolle, dass die Kinder größer geworden sind und so z. B. die Waschmaschine weniger in Betrieb ist. Dafür kamen aber auch Geräte in die Kinderzimmer, die vorher nicht vorhanden waren. Laptop, Konsole und so Zeugs.

Natürlich sind einige der Tipps krass. Das Abschaffen des Aquariums zum Beispiel. Ist natürlich eine Extremlösung und davon abhängig, ob man nun wirklich sparen MUSS oder nur WILL. Ich habe meines damals eigentlich nur an freien Tagen in Betrieb gesehen, meist war nach Feierabend alles bald dunkel. Irgendwann habe ich das als sinnlos empfunden und mir nebenbei die Wasserschlepperei alle paar Wochen erspart. Ansonsten ist es wie bei jedem anderen Hobby – es kostet Geld. Wenn man an seinen Fischen hängt, kosten sie eben auch etwas. Ist ja bei anderen Freizeitaktivitäten nicht anders. Und gegenüber anderen Steckenpferden sind die im Mittel 100 -200 Euro an Strom pro Jahr und Aquarium auch nicht unbedingt teuer. Hier muss man die Kosten einfach in das richtige Verhältnis setzen.

Das Problem ist natürlich auch, dass ein radikales Neuanschaffen vieler Geräte gar nichts bringt. Man kann dann durchaus eine 1000€ ausgeben, diese Kosten aber vielleicht gar nicht mehr reinholen. Wie immer, muss bei so einem Thema der Einzelfall betrachtet und der Verstand genutzt werden.

Zum Schluss ein Wort an diejenigen, die etwas ändern können. Auch wenn sie sich nicht hierhin verirren werden:

Unterm Strich ist eines sicher: Die aktuellen Stromkosten sind so nicht hinzunehmen, da muss sich was tun! Strom ist kein Luxusgut, er ist lebensnotwendig. Damit darf kein Schindluder und schon gar keine Bereicherung getrieben bzw. erzielt werden. Und dann mal bitte über die Mehrwertsteuer bei Lebensnotwendigem nachdenken! 

 

 

 

 

Elektor Review: Mini-Oszilloskope

Mein DSO-138 ist mir für kleinere Aufgaben zum geschätzten Helfer geworden.

Gar nicht mal, um komplexe Messungen durchzuführen, eher um einfach zu sehen, welches (und ob überhaupt) Signal da an einem Schaltungsteil zu finden ist.

 

Das Elektronikmagazin „Elektor“ hat auch einige Zeilen zu dem Thema verfasst, den Link gebe ich hier gerne weiter :-)

 

 

 

 

Powerbank – Solar – Ampere 2 go

Wie einige Stammleser hier wissen, habe ich in der Vergangenheit des öfteren kleine Projekte realisiert, welche mir zumindest im Garten ein netzstromunabhängiges Arbeiten ermöglichen. Sollte ich irgendwann mal wieder in den Genuss kommen Camping zu machen, dürfte dies zusätzlich hilfreich sein ;-)

Hier ein wenig 12V aus der Sonne  neuerdings (eher 5V), ohne feste Verbindung an das Stromnetz auskommen zu können, ist verlockend. Durch das enorme Ansteigen der USB-5V-Mobilgeräte, sind ja auch in einer Menge Varianten möglich, die vor ein paar Jahren schlicht nicht zu finden waren.

Mir geht es allerdings gar nicht so sehr darum, den kompletten Haushalt mit Energie zu versorgen, da müss(t)en andere Größenordnungen her. Mir geht es eben um die Möglichkeit, an beliebigen Standorten elektrisch versorgt zu sein, wenn es nicht gerade um das Kochen, Heizen oder Kühlen geht.

Oft gibt es aber falsche Vorstellungen der Leistungsfähigkeit von mobilen Stromversorgungen für Kleinstgeräte, genau der Grund für mich, diesen Blogbeitrag hier zu schreiben ;-) Ausgelöst durch einige Kundenbewertungen und Forenbeiträge im weltweiten Netz und auch durch Emails, welche als Reaktion auf meine Artikel hier so eingetroffen sind, muss ich einfach ein paar Zeilen online bringen.

Ein kleiner Vergleich zur Veranschaulichung

Um zu Beginn doch einmal bei einem Haushaltsgerät zu bleiben, nehme ich als Anschauungsobjekt eine Kaffeemaschine mit 1000 Watt Leistungsaufnahme, so ein Teil kennt ja wahrscheinlich jeder. Im deutschen Versorgungsnetz leben wir mit 230V Wechselspannung, das ist auch kein Geheimnis. P (Leistung) = U (Spannung) x I (Strom), folglich benötigt die Maschine 1000 (W) : 230 (V) = 4,3 Ampere.

An die 230V Steckdose in der Küche angeschlossen, möchte die Maschine in der aktiven Kochphase also 4,3A bekommen, um das Wasser zu erhitzen und eben Kaffee aufzubrühen. Die Werte einfach mal im Kopf behalten.

Strom einer Powerbank

Eine durchschnittliche Powerbank im Jahre 2018 bietet meist eine Kapazität von 6000 – 16000 mA/h, je nach Größe, Bauform und Gewicht. Gehen wir hier mal von 10000 mA/h aus, bedeutet dies nichts anderes, als das die Akkus im inneren des Gerätes eben diese Kapazität bieten, natürlich davon ausgehend, dass der Hersteller nicht schöngerechnet hat. Diese Akkus können also entweder einen Verbraucher 1 Stunde lang mit 10 Ampere (=10000 mA) oder 10000 Stunden lang mit 1 mA versorgen.

Weiter ist wohl unbestritten, dass ein USB-Port mit einer Spannung von 5V arbeitet, bei einer gängigen Powerbank meistens mit einem maximal entnehmbaren Strom von 2A, oft auch nur 1A. Nehmen wir mal beispielhaft 2A als möglich, sind das 2A x 5V = 10W. Nicht vergessen, bei der Leistung ist es egal, ob ich nun bei 1000W mit 1 A bei 1000V oder mit 1V an 10000A arbeite, es bleibt eine Leistung von 1000W. Hier wird vielleicht schon klar, warum man aus einer Powerbank niemals eine Kaffeemaschine oder einen Toaster betreiben können wird, welcher für den normalen Haushalt gedacht ist.

Um trotzdem aus einer Powerbank eine Kaffeemaschine betreiben zu können, müsste also ein Gerät her, welches technisch derart realisiert ist, dass es mit einer Leistung von rund 10W Wasser in nennenswerter Menge und Zeit ausreichend erhitzen kann Beim Verfassen dieses Artikels habe ich in der Form noch nichts gefunden, unmöglich wird es aber wahrscheinlich nicht sein ;-) Bis vor einigen Jahren habe ich auch keine Lötkolben gekannt, die mit normalen AA-Batterien funktionieren, mittlerweile findet man die Teile in jedem einigermaßen sortierten Baumarkt.

Ohne Sonne kein Strom. Immerhin, für die Beleuchtung von oben reichten die LED’s der Powerbank, aufgeladen mit Sonnenlicht. Für das Notebook musste aber dann doch der Netzstrom her :-)

Laden externer Geräte mit einer Powerbank

Nun kann man ja auf die (an sich) korrekte Idee kommen, dass mit einer Powerbankkapazität von 10000 mA/h ein Smartphone mit einer Akkukapazität von 3000 mA/h mindestens drei mal vollständig aufgeladen werden kann, bei einem Ladestrom von rund 2 Ampere obendrein in knapp 1,5 Stunden. Könnte man, ja…

Leider ist allerdings die Erde sozusagen ein Strafplanet, alles muss mit Verlusten bezahlt werden! Nichts, was man hier an Energie erhält, lässt sich verlustfrei von A nach B transportieren. Um die Geschichte noch ein wenig ineffizienter zu gestalten, kommt zusätzlich ein Anpassungsproblem der Spannungen hinzu:

Der USB-Port soll 5V an Spannung bereitstellen, die gängigen Akkutypen liefern aber vollgeladen nur ca. 4,2V. Also muss eine Technik her, welche immer dafür sorgt, dass die Akkuspannung möglichst stabil auf 5V herauftransformiert wird. Zusätzlich möchte der verwöhnte Benutzer (ich bin auch so einer ;-) ) auch noch per netter LED-Kette oder ähnlichem auf dem Laufenden gehalten werden, was sich in der Powerbank so abspielt. Beim Aufladen des Akkus will auch die Ladeelektronik versorgt werden, wieder Verluste. Tja, und das Ergebnis? Mehr als 60% der Akkukapazität einer Powerbank, sind kaum nutzbar. Bei qualitativ brauchbaren Exemplaren versteht sich, hat man beim Kauf daneben gegriffen, geht weniger sozusagen immer. In der Praxis bin ich bei der Annahme, dass mit mehr als 50% nutzbarer Kapazität einer Powerbank eher nicht gerechnet werden sollte, ganz gut ausgekommen, Schlussendlich darf man auch nicht vergessen, dass 5V nicht gerade Hochspannung sind, mit meterlangen (und querschnittsmäßig dünnen) USB-Strippchen, kommen weitere Verluste hinzu. Die Ladezeit an sich KANN kurz sein, muss sie aber nicht. Hängt nun ein Handy mit 3 Meter langem und zeitgleich dünnem USB-Kabel an der Powerbank, kann alleine schon der Leitungswiderstand den Ladestrom negativ beeinflussen. Wo Widerstand herrscht, gibt es auch einen Spannungsabfall und am zu ladenden Gerät kommt weniger an. Tja, was noch? Die Ladeelektronik im Telefon und, vor allem, der Strombedarf des Smartphones während des Ladens verlangt Beachtung. Ist das Gerät aktiv und benötigt dementsprechend Leistung, sagen wir mal 1 Ampere, sind schon 50% des erhofften Stromes für die Ladung anderweitig dahin. Bei den oben angenommenen Werten ist die Ladezeit dann auf rund 3 Stunden angestiegen. Die evtl. strombegrenzende Wirkung der Kabel, Verluste in der Ladeelektronik des Telefons und vielleicht fragwürdige Leistungsangaben der Hersteller, noch außen vor ;-)

Zu den USB-Ladekabeln an sich hatte ich übrigens in der Vergangenheit schon ein paar Worte verloren, ich verlinke mal. In der Praxis ist alles allerdings nicht ganz so drastisch und schrecklich, meist wird ja ein nicht völlig entladenes Smartphone oder Tablet mit einer Powerbank eher zwischengeladen, das Mobilgerät ist nicht unbedingt Daueronline und die Strippen sind nicht so arg schlecht – man kommt klar :-)

Laden der Powerbank

Kurzversion: Steckernetzteil in die passende Steckdose stecken, USB-Strippe rein und ab an die Bank. Einigermaßen verlustarme Kabel und eine brauchbare Laderegelung vorausgesetzt, kommt die Rechnung Akkukapazität geteilt durch Ladestrom gleich Ladezeit recht gut aus, gut 30% sollte man aber dennoch auf die erwartete Zeit addieren.

Schwieriger wird das natürlich unterwegs. Ist kein Netzstrom verfügbar, bleiben aktuell nennenswert nur die Sonnenstrahlen als Energiespender. Eigentlich funktioniert dies gut, man sollte allerdings realistische Vorstellungen haben und, das wichtigste überhaupt, es muss Sonne da sein. Nicht nur erahnt hinter Wolken oder irgendwo im Rücken der Solarzellen, nein, volle Pulle senkrecht drauf auf’S Paneel. Auch wenn die Effizienz der Solarzellen in den vergangenen Jahren wirklich merklich gestiegen ist, kommt man über 18% selten hinaus. Für den Nutzer ist dies allerdings eher zweitrangig, es zählt ja der nutzbare Strom am Ausgang der Ladetechnik und nicht das, was die Sonne wirklich an Energie zu bieten hätte. Es gibt nur eben eines was leider unumgänglich ist: Viel Solarstrom braucht auch viel Fläche. Ist so, kann man nicht ignorieren.

Damit sind wir dann auch an dem Punkt, warum ich diesen Artikel überhaupt schreibe. Die beiden „low cost“ Powerbanks im ersten Bild dieses Artikels, sind mit Solarzellen ausgestattet. Liegen sie in der Sonne, fließt tatsächlich ein Ladestrom. Die Tatsache, dass beim Laden in praller Sonne auch die Akkus im inneren praktisch mitgekocht werden, ignoriere ich an dieser Stelle. Sie behaupten eine Kapazität von 15000 mA/h zu besitzen, sind mit durchaus effektiven LED’s zur Beleuchtung ausgestattet und können zum Standard-USB auch eben per Sonnenlicht geladen werden. Die Teile sind jetzt nicht der High-Tech-Kanaller, haben sich in den letzten 2 Jahren aber bestens bewährt, werden nur gelegentlich zu Unrecht mangelhaft bewertet. Ich versuche mal, das aufzuschlüsseln.

Das Solarpaneel hier links im Bild, ist eine aktuelle Anschaffung für meine Strom-im-Sommer-im-Garten-Idee. Mit der gesamten Fläche sind nach Herstellerangabe maximal 3,5A Strom bei 5V unter optimalen Bedingungen zu realisieren. In der Praxis komme ich auf rund 2,8A. Diese aber eher rechnerisch, ich habe einfach kein Gerät mit dieser hohen Dauerstromaufnahme, welches über einen relevanten Zeitraum hinweg Messungen ermöglichen würde. Diese Werte sind mir aber in der Praxis eher zweitrangig, ich betreibe meine Mini-Insellösung in der Anordnung Solarpaneel -> Powerbank -> Verbraucher. Mal mit nur dem Tablet als Endgerät, gelegentlich zusätzlich der Minilötkolben und das Smartphone, wichtig ist mir die verfügbare Energie aus der Powerbank. Unter dem Strich soll das Solarpaneel einfach nur genug Nachschub liefern.

Das Paneel hat zwei USB-Ausgänge, für längere Aktionen kommt an jeden eine Powerbank, bisher hat dies immer ausgereicht. Nur, die Sonne muss da sein! Jetzt bin ich allerdings nicht so irre, mich bei grauem Wetter oder gar Regen in den Garten zu setzen um dabei festzustellen, dass ohne Sonne keine nennenswerte Ladung stattfindet Beim Camping und überhaupt unterwegs allerdings, könnte dies natürlich schon eine Rolle spielen, da hilft nur das Hoffen auf genug Akkupower bis zum nächsten Sonnenschein. Generell würde ich aber immer empfehlen, mit aufgeladenen Geräten auf Tour zu gehen ;-)

Bei solchem Wetter, hält sich die Solarenergie eher in Grenzen. Die meiste Zeit beim Erstellen dieses Artikels, haben sich Sonne und Wolken im Minutenrythmus abgewechselt.

 

 

Mehr als 160 mA sind gerade nicht drin, die Sonne ist allerdings in diesem Moment vollständig von den Wolken verdeckt. Dringen die ersten Sonnenstrahlen durch, geht es recht schnell auf etwa 900 mA, mehr scheint meine Powerbank einfach beim jetzigen Ladestand nicht zu verlangen.

 

Zurück zum Anlass, diesen Artikel zu schreiben. Viele Bewertungen im WWW zerreißen die Solarpowerbanken regelrecht. „Die Zelle kann den Akku gar nicht laden“, „alles dauert ewig“ und „Gerät nutzlos“, heißt es oft.

Nun, doch, kann sie alles! Aber nur elend langsam. Was aber anhand der Fläche auch kein Wunder ist. Die Solarzelle dieser Powerbank hat knapp 1/6 der Fläche, die das gezeigte eigenständige 3,5A-Solarpaneel mit nur einer seiner 3 Teilflächen bietet. Konkret bedeutet dies,1 Ampere pro Teilfläche, bei 1/6 davon hat die kleine Zelle auf der Powerbank eine Stromausbeute von roundabout 160 mA, Verluste und Co nicht im Ansatz bedacht. Sie bietet eine (Herstellerangabe) Kapazität von 15000 mA/h, Man muss nun nicht Albert Einstein sein, um auf gut 100 Stunden Ladezeit zu kommen. Volle Pulle ununterbrochen Sonne und immer korrekt ausgerichtet versteht sich ;-) Das wird sehr, sehr lange dauern!

Aber: Im hintersten Ödland immerhin die Chance, vielleicht noch den letzten rettenden Anruf tätigen zu können! :-D

Bemerkungen am Rande

Jemand schrieb, mit 12V Zellen hat man dann ja mehr Leistung. Schön wäre es, ist aber Unsinn. Leistung bleibt Leistung. Habe ich eine Leistung von z. B. 60W zur Verfügung, sind dies bei 12V eben 5A Strom. Bei 5V immerhin 12 A – es bleiben 60W. 12V Geräte kann ich an 5V nicht betrteiben, beim Betrieb von 5V Geräten an 12V muss ich 7V loswerden, oft buchstäblich verheizen – Effizient geht anders ;-)

Gerne kommt auch die Frage, ob man nicht den Getränkekühler im Sommer auch im Garten unter dem Sonnenschirm oder am Strand betreiben kann. Nun, bestimmt nicht aus einer USB-Powerbank, der Rest sollte sich aus dem Artikel ergeben.

Wichtig ist natürlich auch die Tatsache, dass Sonnenenergie flüchtig ist. Man muss sie also speichern, gängig sind hier Akkus. Eine Powerbank oder ein Smartphone bringen ihre Akkus mit, zunächst kein Problem. Ist der Akku allerdings voll, ist nichts mehr mit speichern. Dann kann man nur verbrauchen was über ist, ohne Sonne wird sofort auf die gespeicherte Energie zurückgegriffen. Wer also auch bei einem längeren Tripp in der Wildnis auf der sicheren Seite stehen möchte, sollte sich vorhe gut seinen Strombedarf berechnen und ausreichen Speicherkapazitötämit sich führen und diese bei jeder Gelegenheit aufladen.

Fazit:

Mobile Kommunikation, Licht mit LED-Lampen, Radio oder mobile Kleinleistungswerkzeuge kein Problem, darüber wird es schon Aufwändiger.

Nimmt man nur mal ein Notebook als Beispiel, werden oft 19V bei rund 4A gewünscht, da muss zusätzliche Technik her. Veranschlagt man den Leistungsbedarf mit rund 100W und wählt als Solarquelle Module mit 12V Ausgangsspannung, muss mindestens ein Step-Up-Wandler von 12 auf 19V angeschafft werden (die sogenannten KFZ-Notebookadapter-/Netzteile sind nichts anderes), um Sonnenschwankungen zu kompensieren, braucht es aber auch noch einen Akku. Um diesen aus der Sonne zu laden, ist ein Solarladeregler ebenso Pflicht. Will man sinnvoll an die Sache gehen, liegt der Pufferakku im Bereich der Größe einer kleinen Autobatterie. Für 100W Leistung dürften rund 2-3 Quadrtameter Solarpaneel nötig sein, um frustfrei über die Runden zu kommen, solange die Sonne scheint. Da das Notebook alleine schon knapp unter 100W für sich beanspruchen kann, bleibt für eine Akkuladung natürlich nur dann eine Reserve, wenn das Notebook gar nicht läuft :mrgreen:

Immerhin, mein klassischer Geräteaufbau für ein bisschen produktives EDV- und Elektronikwerkeln im Garten funktioniert. Das recht betagte Galaxy Tab 2, die Bluetoothtastatur und mein Handy halten eigentlich immer ausreichend lange durch. Scheint die Sonne intensiv genug, wird die Powerbank nicht mal vollständig entladen, allerdings starte ich im Allgemeinen auch den Tag mit vollen Akkus an allen Geräten. Wenn ich zwischendurch den USB-Lötkolben oder auch mein DSO-138 mal anklemme, fällt das allgemein kaum ins Gewicht, ich bin zufrieden und wünsche Euch einen schönen Sommer :-)

 

 

 

 

 

 

Elektronik – Der Widerstand – Der Kurzschluss

Ich muss mal ein paar Worte zum Thema „Kurzschluss“ in Text fassen.

Gerade zu meinen Beiträgen über die Vorwiderstände von Leuchtdioden und NPN-Transistoren, werden gerne mal Anfragen gesendet, welche im Kern Missverständnisse bei der Verwendung von Widerständen im Allgemeinen deutlich machen. Oft fehlt auch einfach das Gefühl dafür, in welchen Bereichen der elektrischen Werte man sich bewegt. Sehr oft wird mir pauschal für Probleme der Begriff „Kurzschluss“ entgegengeworfen, da muss man aber gelegentlich etwas differenzierter herangehen.

Konkret ging es in einer Mail um einen Kurzschluss, der immer dann aufgetreten ist, wenn ein Mikrocontroller einen bestimmten Teil einer Schaltung gestartet hat. Der betroffene Part der Steuerung sollte über einen PIC-Controller mehrere Spulen einer Carsystemsteuerung einschalten, dabei brach augenscheinlich die Spannung zusammen, der Controller hat einen Reset durchgeführt und das Spiel begann von vorne. Es wurden Spulen getauscht, Transistoren gewechselt, neue Controller verbaut – keine Besserung. Irgendwann hat der Betreffende mich dann angeschrieben und gefragt, ob ich da helfen könnte. Grundtenor war jedesmal „Beim Einschalten gibt’s immer Kurzschluss…!“.

Später hat sich herausgestellt, dass nicht die Schaltung den Fehler produziert hat, lediglich das Labornetzteil hat sich bei Strömen über 1 Ampere abgeschaltet, was irrtümlich als Kurzschluss gewertet wurde.Leider wurden keine Messungen durchgeführt, eher so eine „Bauteiltausch auf Verdacht“ – Diagnose, die „Try & Error“-Fehlersuche führt aber doch oft zu falschen Rückschlüssen.Mit gezielten Messungen und ein paar Modifikationen haben wir das dann in den Griff bekommen.

Wie auch immer, ein plötzlich auftretender höherer Stromfluss muss nicht immer ein Kurzschluss sein. Im vorliegenden Fall war es völlig ausreichend, die Spulen mit 27 Ohm Vorwiderständen zu versehen und um einige Millisekunden versetzt einzuschalten.,

Es kommt oft einfach auf den Strom an, der zum Zeitpunkt der maximalen Belastung fließen kann und da spielen ja gerne mal Widerstandswerte eine Rolle,

Sind 10 Ohm als Vorwiderstand bei gängigen Versorgungsspannungen von 5V oder 12V für eine LED viel zu wenig, ist dies beim Widerstand von z. B. Glühlampen im Modellbau durchaus ein realer oder sogar hoher Wert. Zusätzlich gibt es oft Verwirrung bei der Einschätzung der Leistungsfähigkeit und des Leistungsbedarfs von verwendeten Netzteilen, gerne auch am und mit dem PC, für ein Labornetzteil bzw. die Stromversorgung im Hobbykeller gilt das natürlich ebenso. Es kommt eben immer darauf an, welche Komponenten ich zu welchem Zweck kombiniere.

Die Berechnung von Widerständen an sich habe ich hier schon erwähnt, vielleicht einfach mal „drüberlesen“… ;-)

Decoder einer Modellbahnlokomotive. Hier war kein kompletter Kurzschluss aufgetreten, der maximale Strom war aber über einen längeren Zeitraum knapp unter dem Limit der Sicherung.

Der Kurzschluss

Nun werfe ich also mal einen Blick auf den Begriff „Kurzschluss“. Was passiert hier?

Mal angenommen, im klassischen Fall einer (2 x 1,5V = 3V) Batterie in einer Taschenlampe ist etwas defekt und ein Stückchen Metall verbindet Plus und Minus der in Reihe geschalteten Batterien direkt.. In diesem Fall wird die Lampe mit ziemlicher Sicherheit dunkel bleiben, obwohl ein Strom fließt bzw. sie eingeschaltet ist.

Warum ist das nun so?

Die Leistungsfähigkeit der Batterie ist begrenzt. Fließt nun durch die Überbrückung der höchstmögliche Strom, können die Batterien die 3V nicht mehr zur Verfügung stellen, die Spannung bricht zusammen. Technisch gesehen hat man der LED oder dem Lämpchen in der Taschenlampe einen sehr niedrigen Widerstand parallel geschaltet, eben das Stück Metall, was den in diesem Fall echten Kurzschluss verursacht. So ein Fitzelchen Blech oder ein verirrtes Stück Kabel hat einen Widerstand von wenigen Milliohm, die Batterie wird überlastet, sie kann ihre Nennspannung von 1,5V pro Zelle einfach nicht mehr liefern.

Hätte man nun eine Stromversorgung, die genügend Leistung bietet, um die 3V aufrecht zu erhalten, würde trotz der fehlerhaften Verbindung, welche den Kurzschluss darstellt, auch die Lampe leuchten. Dummerweise würde man also zunächst keine Fehlfunktion bemerken, die Lampe funktioniert ja. Durch den extremen Stromfluss, bedingt durch den immer noch vorhandenen niedrigen Widerstand an der Fehlerstelle, wird sich diese Stelle aber in kurzer Zeit sehr stark erhitzen, hier wird der elektrische Strom einfach völlig nutzlos in Wärme umgewandelt. Irgendwann passiert dann irgendetwas. Vielleicht verkokelt die ganze Lampe oder die schwächste Stelle in der Kette der elektrisch verbundenen Bauteile gibt auf, wahrscheinlich irgend ein kleines Stückchen dünne Leitung..

Im Idealfall existiert in einem elektrischen Gerät eine Sicherung, die immer dann den Stromkreis öffnet, wenn irgendwo in der Schaltung ein Umstand auftritt, der ein ungewöhnliches Verhalten verursacht. In den meisten Fällen einen zu hohen Stromfluss. Hier würde die Sicherung ansprechen, was bei simplen Lämpchen aber, mangels Beuteil, eher nicht zu erwarten ist. Unter Umständen lohnt es sich vielleicht, bei kleineren Geräten über einen Polyswitch als rückstellende Sicherung nachzudenken ;-)

In der umgekehrten Situation kann es aber auch durchaus Kurzschlüsse geben, die nicht sofort bemerkt werden. Gerade bei durchgescheuerten Leitungen oder in schmutzigen Umgebungen sind die leitenden Materialien nicht immer metallisch blank. Hier berühren sich zwar die Leiter, durch Schmutz oder auch Oxydation ist aber ein unberechenbarer Widerstand entstanden, welcher das eigentliche Gerät an sich problemlos funktionieren lässt, trotz allem aber ein Kurzschluss vorhanden ist. Meist bemerkt man eher einen bedenklichen Geruch, kann aber bis zum Totalausfall (gerne auch auftretendem Rauch) nichts feststellen.Im Prinzip ist hier der Kurzschluss eben nicht um 0 Ohm herum zu suchen, er liegt irgendwo in einem kritischen Bereich, welcher aber die hoffentlich vorhandenen Sicherungsmaßnahmen nicht auslösen lässt. Im Zweifel kann hier eine Messung der Stromaufnahme helfen, sollte der Verdacht eines Fehlers vorhanden sein.

Lange Rede, kurzer Sinn: Nicht jeder Fehler ist ein Kurzschluss, nicht jeder Kurzschluss führt zum Fehlverhalten :-)

 

 

 

 

Verschleiß, Verschleiß…

Mal wieder etwas aus dem Alltag eines Mitarbeiters in Sachen Technik einer Modellbahnausstellung :-)

Das links sind Achslagerbleche einiger Typen von Personenwagen der Firma Roco. Keine echten Wagen, die im Maßstab 1:87 ;-)

 

 

Zusätzlich dienen diese Bleche der Stromabnahme vom Gleis über die Räder in das Wageninnere.

Die Spitzen der Achsen sitzen in  Vertiefungen, sind also sozusagen eingeklemmt und leiten über die Spitze den Strom in die Bleche, die per Schleifkontakt ihrerseits mit dem Wagenkörper verbunden sind. Bei dem Waggon, aus dem diese Bleche stammen, war in den letzten Tagen eine schlechte Stromaufnahme aufgefallen – ein Fall für die Werkstatt. Wenn man nun sieht, dass dort, wo eigentlich Blechvertiefungen zu finden sein sollten, nur noch Löcher sind, verwundert das wenig.

 

Wer weiß, was diese Lager sonst noch für Überraschungen parat gehabt hätten, lange wären die Achsen da nicht mehr vernünftig geführt worden.

Auf dem zweiten Foto hier zum Vergleich die neuen Ersatzbleche.

 

 

Immerhin hat alles rund 8 Jahre lang durchgehalten, bis zu 12 km pro Ausstellungstag :-D Natürlich ist jetzt aber auch klar, dass da noch mindestens 80 Wagen zur Überprüfung anstehen, na dann :mrgreen:

 

 

 

 

 

 

Mobile Elektronikwerkstatt

Die Power-Bank füttert den USB-Lötkolben. Das funktioniert recht gut, wenn man der roten LED trauen kann, hat der kleine Hitzespender sogar eine Regelung.

Ich habe im Laufe der letzten Monate immer wieder Werkzeuge erstanden, mit denen sich ohne eine vorhandene 230V-Installation elektronisch arbeiten lässt.

Von USB auf Hohlstecker. 5V rein – 9V raus. Wo das Limit liegt kann ich noch nicht sagen, für das DSO 138 Oszilloskop reicht es auf jeden Fall. Mit ziemlicher Sicherheit kann ohnehin kein Strom geliefert werden, den der USB-Standard nicht bietet. Eine 12V Variante ist ebenfalls verfügbar, habe ich aber mangels Bedarf nie gekauft.

 

 

 

 

Der Grundgedanke bzw. die Grundidee bei dieser Sammlung an Werkzeugen ist eigentlich dem Umstand geschuldet, dass man als Mitarbeiter einer Modellbahnausstellung oft mehr Zeit mit dem Einrichten von Baustellen unter, neben und auf den diversen Anlagen verbringt, als mit der eigentlichen Aufgabe. Auch ist es z. B. fast unmöglich, ohne helfende Hände mit Kabeltrommel, Verlängerung und Mehrfachsteckdose in einem Miniaturbahnhof zu löten, wenn die Oberleitung oder die filigranen Szenen nicht ruiniert werden dürfen. Zusätzlich gibt es etliche Gelegenheiten, bei denen man potentialfrei arbeiten muss oder sollte, die Digitaltechnik einer modernen Modellbahnsteuerung ist zuweilen recht zickig ;-)

Am besten ist also eine kleine Werkzeugkiste, mit deren Inhalt man schnell und ohne großen Aufwand sofort loslegen kann, Akkubetrieb ist natürlich das oberste Gebot.

Ein kurzer Blick auf das Typenschild.

Wir leben ja aktuell ohnehin in einer Welt der mobilen Digitaltechnik, irgendwie wird alles mit allem vernetzt und in erster Linie unterwegs nutzbar. In der Jackentasche gibt es aber keine Steckdosen :-) Schöner Nebeneffekt ist, dass möglichst viele Leute mit möglichst langer Akkulaufzeit leben wollen und somit Power-Banken (kann man das so nennen?) erschwinglich und mit hohen Akkukapazitäten gut verfügbar sind. Seit diese Energiespeicher in Masse existieren, haben viele Hersteller einiges an mobilen Hilfsmitteln auf den Markt gebracht. Für Elektroniker, die gerne mal in der Garage, im Auto oder eben auch auf einer „schnellen Baustelle“ löten und messen wollen, perfekt!

Ich habe unten diverse Artikel verlinkt, mit denen ich schon in Berührung gekommen bin. Letztendlich liefert eine Power-Bank den Strom, der USB-Kabel-Spannungswandler versorgt das DSO (9V) und der USB-Lötkolben holt sich seinen Saft ebenfalls aus dem Akku. Alternativ geht es auch mit dem Batterielötkolben – geade dort, wo ich das restliche Equipment nicht mitschleppen will.

Auch wenn es jetzt wieder einen Beigeschmack von Reklame hat: Ich denke, so ein Beitrag zum Thema „Mobile Elektronikwerkstatt“ macht Sinn ;-) Wie oft habe ich schon erlebt, dass Leute erheblichen (auch finanziellen) Aufwand treiben, um an Stellen zu werkeln, die ohne direkte Stromversorgung ziemlich ungeeignet dafür sind.

Reklame deshalb, weil ich unten auf einige der Geräte verlinkt habe, die hier im Einsatz sind. Klar gibt es durch solche Werbung immer mal einen Obolus, vielleicht werden andere Webseitenbetreiber damit sogar reich – ich jedenfalls nicht :mrgreen: Ist auch gar nicht mein Ziel, solange es die Beiträge aber nicht unleserlich macht, stützt es wenigstens die Blogkosten ein wenig.

Ich habe bewusst nichts hochpreisiges ausgewählt, dazu habe ich zu oft die Erfahrung gemacht, dass die meisten Werkzeuge in der mobilen Version eher durch mechanische Beschädigung ruiniert werden als durch Verschleiß. Bei einem 7€ Lötkolben mache ich mir auch keine großen Gedanken um die Lötspitze, sie hält eben so lange, wie sie hält ;-)

Wie auch immer: Wenn gelegentlich Aufgaben anfallen, die keine großen Umstände hervorrufen sollen, sind diese Tools schon recht nützlich. Wenn der Sommer in diesem Jahr passendes Wetter zu bieten hat, werde ich wohl spätestens nach der Gartensaison mehr zur Haltbarkeit und Leistung bei vermehrtem Einsatz all dieser Geräte sagen können. Bis hier ersteinmal ein kleiner Ausschnitt, was es so alles gibt ;-)