Der PIC 12F675 Teil 3 – OPTION Register

PIC © 12F675 Weiter geht es mit der Beschreibung der PIC12F675. Ich kann übrigens nicht versprechen, dass die Blogbeiträge alle zeitnah und direkt nacheinander erscheinen, also nutze ich mal aus, dass heute gerade Zeit übrig ist :-)
 

 

OK, das nächste Register:

OPTION_REG:

In diesem Register werden Einstellungen zum Timer, dem Watchdog und auch möglichen Pull-Up Funktionen festgesetzt. OPTION liegt in Bank 1!

Bit 7:

0 = Pull Up’s aktiv

1 = Pull Up’s deaktiviert.

Pull-Up Widerstände dienen dazu, einen definierten Pegel an einen Port-Pin zu legen. Ist ein Pin beispielsweise als digitaler Eingang definiert, muss er einen festen Pegel aufweisen, ‚L‘ oder ‚H‘. Der Pull-Up Widerstand ist so in der Lage, einen festen ‚High‘-Pegel zu erzeugen, bis aus der Schaltung eine Änderung eintritt, welche einen sicheren ‚Low‘-Pegel liefert. So ist sichergestellt, dass kein undefinierter Zustand eintreten kann. Ich persönlich realisiere aber solche Lösungen immer mit externen Widerständen, so kann ich den Widerstandswert selber bestimmen.

Bit 6:

1 = Interrupt bei steigender Flanke an Pin GP2

0 = Interrupt bei fallender Flanke an Pin GP2

Interrupts dienen dazu, das laufende Programm bei auftreten einer bestimmten Situation zu unterbrechen und eine Aktion auszuführen. Der PIC hat mehrer Möglichkeiten dies zu vollziehen, in diesem Fall durch eine Pegeländerung an Pin GP2

Bit 5:

Hier wird festgelegt, aus welcher Quelle der Timer0 seinen Takt bezieht. Dies kann entweder durch ein externes Signal an GP2 geschehen oder durch einen internen Taktgeber. Auf die Timer komme ich auch noch gesondert zu sprechen.

1 = Takt an GP2

0 = Interner Takt

Bit 4:

Auslösen des nächsten Timerschrittes, wenn Takt an GP2 anliegend.

1 = Pegelwechsel von ‚H‘ nach ‚L‘

0 = Pegelwechsel von ‚L‘ nach ‚H‘

Bit 3:

Festlegen, ob der Vorteiler dem Timer0 oder dem Watchdog zugeordnet ist, siehe auch Beschreibung Bit 0-2

Bit 0,1,2:

Der PIC arbeitet mit einem Arbeitstakt von einigen Hz bis zu etlichen Mhz. Der Vorteiler kann eingesetzt werden, um die Zählgeschwindigkeit zu reduzieren. Je nach Einsatz, kann der Muttertakt bis zum Verhältnis 1:256 (1:128 beim Watchdog) geteilt werden. Hier muss wieder mal das Datenblatt her, wenn man die Funktionen detailliert betrachten möchte. Setzt man die Bits 0,1,2 auf 111, arbeitet in diesem Falle der Timer0 mit einem Teilungsverhältnis von 1:256, bei 000 auf 1:2.

Der PIC 12F675 Teil 1 – Grundsätzliches

Informationen zum Microchip PIC 12F675 

Wie schon erwähnt, arbeite ich sehr gerne mit den ‚kleinen‘ PICs, vorzugsweise dem 12F675. Es gibt sehr viele Fälle in denen mehr Ports und Rechenleistung einfach nicht benötigt werden. Die Blogeinträge zu diesen Themen sind noch nicht lange online, trotzdem kamen schon ein paar Fragen zu Chip & Co, ich werde also mal versuchen, ein paar Erläuterungen zum µController zu geben.

 

Vorweg:

Ich habe kein deutsches Datenblatt zur Hand und habe auch kein richtiges über Tante Google finden können, man kommt also nicht drumherum, sich das englische anzusehen. Größtenteils ist das aber nicht sehr schlimm, es geht in der Hauptsache darum, die Register zu kennen und die möglichen/notwendigen Einstellungen vornehmen zu können. Diese sind ohnehin teilweise so kryptisch bezeichnet, das Sprachkenntnisse an der Stelle wenig bringen :-D

Was braucht man, um den PIC zu verstehen? Hier zwei Links, die vielleicht helfen:

Was man im Hinterkopf haben sollte:

  • Direkt nach dem Einschalten sind alle Ports Eingänge, soweit möglich analog
  • Es ist nicht unbedingt ein externer Oszillator nötig
  • Einige Register MÜSSEN eingestellt werden, sonst geht i.d.R. nichts
  • Die Config Bits MÜSSEN gesetzt werden, per Programm oder Brennsoftware
  • Pin 4 (Reset) muss über einen Widerstand an +UB (5-20k)
  • Wenn mehr als ein paar mA benötigt werden, extern beschalten
  • Betriebsspannung (ca.) 2,0 – 5,5V
Mir ist klar, das es auch hier wieder Ausnahmen gibt. Wer so fortgeschritten ist, wird sich meine Starthilfen aber wahrscheinlich nicht mehr antun :-) und kennt die weiteren Möglichkeiten.
Was kann/hat der 12F675?
  • 8 Bit
  • max. 20MHz (4 MHz bei internem Oszillator +/- 1%)
  • A/D Wandler 10 Bit
  • 6 I/O Ports (5 bei normaler Resetfunktion)
  • Analogkomparator
  • 2 Timer (8- und 16 Bit)
  • 1k Programmspeicher, 64 byte SRAM, 128 byte EEPROM
  • max. 25mA pro I/O Pin aber NICHT mehr als 125 mA gesamter Port!
Hinweis für alle, die schon mit anderen PICs gearbeitet haben oder ein anderes Programm portieren wollen:
Es gibt im 12F675 keinen PORTA, PORTB etc., hier wird das I/O Register mit GPIO angesprochen, also z.B. mit ‚bsf     GPIO,5‘ um GP5 auf ‚H‘ zu schalten!
Bei meinem ersten Kontakt mit dem Chip habe ich mich da etwas schwer getan weil ich das schlicht übersehen hatte ;-)
Für alles weitere lohnt natürlich wieder der Blick in das Datenblatt.
Wenn man in seinem Projekt ohne A/D Wandler auskommt, kann man übrigens auch den PIC 12F629 benutzen. Er ist fast identisch zu programmieren, man muss sich nur um die unterschiedlichen Register rund um den A/D Wandler kümmern.

Anmerkung zum Artikel:

Wenn die ganzen Einträge rund um MPLAB, den 12F675 und die Programmierung noch umfangreicher werden, kommen alle Links zu den Beiträgen nochmal auf eine eigene Unterseite um alles besser wiederfinden zu können. Es kann auch sein, das ich bestehende Artikel erweitere, also auch gelegentlich in die älteren Beiträge schauen. 

 

Elektronische Lasten am Mikrocontroller / Offener Kollektor / Transistor als Schalter

Foto-AmpelImmer wenn ich einen Beitrag zum Mikrocontroller (wenn der eine größere Last schalten muss) schreibe, kommen Anfragen zum ‚womit und wie?‘. Im Prinzip bediene ich mich aber immer der gleichen Schaltung, nur mit angepassten Bauteilen.

 

Die meisten Controller arbeiten irgendwo zwischen 2,5 und 5V. Pro Pin sind meist weniger als 20mA maximaler Strom möglich, induktive Lasten sind auch so eine Sache. Wird ein ganzer Port benutzt, kann es noch enger sein. Meist kann dieser, i. d. R. 8 Ausgänge, nur mit max. 40mA belastet werden, diese müssen auf die einzelnen Pins verteilt werden. Einige LEDs kann man so vielleicht noch direkt über einen Vorwiderstand ansteuern, spätestens bei Motoren oder zahlreicheren Leuchtdioden ist aber Schluss. Hilft also alles nichts, es muss ein Verstärker eingesetzt werden, im einfachsten Fall ein Transistor. Um es nicht unnötig kompliziert zu gestalten halte ich mich in diesem Beitrag an die einfachsten Formen, sicherlich sind noch etliche Verfeinerungen möglich.

Hier und hier habe ich ja schon ein paar Worte zum Transistor auf das virtuelle Papier gebracht, die dort beschriebenen Vorgänge sind Grundvoraussetzung zum Einsetzen der folgenden Schaltungsform.

 

Ich nehme mal folgendes als gegeben an:

  • Betriebsspannung 12V DC.
  • zu versorgender 12V / 0,5A Motor, nur in eine Richtung laufend.
  • Ein beliebiger Mikrocontroller, der mit 5V versorgt wird, welche angenommen bereits vorhanden sind.
  • Maximaler Ausgangsstrom des Controller 20mA.
  • Ein NPN-Transistor mit B=100 und max. 1,5A Belastbarkeit (BD139 o. ä.).

Realisiert werden soll eine Schaltung, die bei einem ‚H‘-Pegel am Kontrollerausgang den Motor startet, bei ‚L‘ soll er eben einfach wieder stehen bleiben.
µC-Treiber--Im Bild die Prinzipschaltung.

+12V zum Motor, diese werden bei ‚H‘ am Controllerausgang (und somit der Basis des Tranistors) über den Motor nach GND durchgeschaltet – der Motor dreht sich. Die Freilaufdiode (rot) dient dazu, induzierte Spannungen vom Motor kurzzuschließen. Bei rein ohmschen Lasten wie LEDs oder ähnlichem braucht man sie nicht. Es genügt in diesem Falle übrigens eine Standard 1N400X oder ähnliches, bei höheren Strömen/Spannungen/Frequenzen kann etwas spezielleres erforderlich werden.

Besonderes Augenmerk liegt auf R1 bzw. R2.

R1

Ich habe die Erfahrung gemacht, dass es Umstände gibt, unter denen es besser ist, die Basis eines Transistors sicher auf Masse bzw. GND zu legen. Der Wert ist nicht kritisch, es soll ja auch nicht unnötig viel Strom vom Controller geliefert werden müssen. Es geht eben darum, das im ‚L‘-Zustand des Controllerausganges die Basis vom Transistor auf GND liegt damit er nicht durchschalten kann. Im Alltagsgebrauch bin ich mit 10-100k gut ausgekommen.

R2

Sein Wert ist  abhängig vom B (Verstärkungsfaktor) des Transistors. Ist ‚B‘ im Datenblatt nicht zu finden, auch mal nach ‚hFE‘ sehen. Sinnvollerweise sollte der Transistor so weit aufgesteuert werden wie möglich. Man möchte ja die Energie optimal im Motor umsetzen, nicht in der Schaltung. Ausgehend von +5V am Controllerausgang bei „H“ und einer UBE von 0,7V stehen 4,3V an der Basis des Transitors zur Verfügung. Der Motor will 500mA an Strom, dies ist also das Minimum, was fließen soll. Es wäre allerdings Unsinn, jetzt den Stromfluss auf den Motorstrom zu begrenzen, die Spannung UCE würde ja auch wieder unnötig ansteigen und der Motor als Verbraucher bestimmt in diesem Fall sowieso den maximalen Strom. Um nun den minimalen Basisstrom zu errechnen, muss der Strom den der Controller liefern soll mit dem Verstärkungsfaktor multipliziert werden.

Soll also heißen:

Ich will min. 500mA für den Motor, besser ohne Begrenzung.

Der Transistor verstärkt x100, also müssen min. 5mA vom Controller kommen.

U=R*I -> die oben errechneten 4,3V / 5mA = 860 Ohm

Die ist also der maximale Wert, den der Widerstand R1 haben darf. Da aber der Transistor voll offen sein soll, muss der Basistrom noch höher sein. In diesem Falle spricht man im Allgemeinen vom Übersteuern, es wird mehr Basisstrom zugeführt, als für ein komplettes öffnen nötig wäre, z. B. +200%, also das Doppelte. Hier ist ein Blick ins Datenblatt des Transistors unerlässlich! Einmal für den Verstärkungsfaktor, zum anderen für den maximal zulässigen Basisstrom, ruinieren will man das Bauteil ja auch nicht. In der Praxis nehme ich immer einen Wert zwischen 220 und 470 Ohm, hat bisher funktioniert. Wichtig ist auch, dass der Transistor bei Übersteuerung langsamer wird. Das kann man aber getrost vernachlässigen, wenn man sich nicht im MHz Bereich bewegt. Bei allem, was das Auge erfassen kann allemal.

Ist (bei kleineren Strömen) der maximale Stromfluss erreicht, kann es sogar möglich sein, den Transistor ohne zusätzliche Kühlung zu betreiben. Bei den Universaltypen liegt die UCE übersteuert so um die 300mV. Fließen nun wirklich nur 500mA Motorstrom, sind das nach P=U*I 500mA*300mV= 150mW.

Dieser Schaltungstyp (Open Collector) eignet sich für sehr viele Anwendungen, in denen mit kleinem Steuersignal eine größere Last geschaltet werden soll. Man kann das ganze noch verbessern, indem statt des Transistors ein FET eingesetzt wird oder mit einer Brückenschaltung auch eine Umpolung ermöglicht oder ein Special-IC einsetzt oder, oder, oder… Die Frage ist einfach, wie viel Aufwand man für ein bestimmtes Ziel treiben möchte. Um ein paar LEDs blinken zu lassen, würde ich so simpel wie möglich planen, wenn Geschwindigkeit oder Präzision gefragt ist, entsprechend aufwändiger.

Fazit:

So ganz einfach kann ich das alles auch nicht beschreiben. Aber wenn man sich in den üblichen Hobbyanwendungen bewegt, führen ein BD139 oder BC548 (bei kleinen Strömen), R1=10k, R2=220 Ohm und bei Motoren eine 1N4007 als Freilaufdiode eigentlich immer zum Ziel. Bezogen auf 5V am Controller und 12V Versorgungsspannung für die Last. Evtl. möchte ein Motor auch noch einen Kondensator an seinen Anschlüssen sehen. Sollen LEDs angesteuert werden, die entsprechenden Vorwiderstände nicht vergessen, wie überhaupt natürlich darauf achten, dass Bauteile immer innerhalb ihrer Spezifikationen eingesetzt werden. Und wie immer VORSICHT bei elektrischen Basteleien bzw. wenn man experimentiert! ;.-)

 

 

Anfragen zur Lichtsteuerung

Stromlaufplan 10 Kanal Hauslicht - www.michael-floessel.deSo leid es mir im Moment tut, von den Steuerplatinen kann ich keine abgeben. Die sind komplett verplant!

Vielleicht lasse ich irgendwann welche nachmachen, das lohnt sich aber aktuell nicht wirklich. Vielleicht wenn noch mehrere Anfragen kommen sollten…

 

Prototyp Lichtsteuerung - www.michael-floessel.deWenn man aber nur eine Platine benötigt und/oder noch 160×80 mm Platz hat, ist es vielleicht sinnvoll, einfach eine Schaltung auf Lochraster aufzubauen.

Auf dem Foto ist meine Entwicklungsschaltung zu sehen, die funktioniert nicht schlechter als die geätzten Versionen. Nebenbei beziehen sich auch die Bauteildaten aus dem Schaltbild noch auf dieses Muster.

 

 

 

Beleuchtung bei Modellhäusern – Teil 1

Hauslichtsteuerung Modelbbahn - 1-87 - www.michael-floessel.de

 

 

 

 

 

 

Beleuchtung bei Modellhäusern

Mich hat schon immer geärgert, dass Häuser auf Modellbahnanlagen oftmals entweder komplett beleuchtet sind oder gar nicht. Also alle Zimmer an, oder das komplette Haus dunkel. Wenn man sich beim Bau des Gebäudes etwas mehr Arbeit macht und die Zimmer/Fenster einzeln beleuchtet, kann man dem Original wieder etwas näher kommen ;-)

Zumindest was die Elektronik dafür betrifft, habe ich mir etwas einfallen lassen müssen, nicht nur wegen des Hobbys, aber das führt jetzt hier zu weit. Jedenfalls war dies auch der Grund, warum ich den Magirus Umbau gestern aufgeschoben habe, dass Hausbeleuchtungsprojekt musste fertig werden.

Weiterlesen

Einfaches Lauflicht auf Lochraster mit PIC 16F688 und SMD LEDs – Teil 3

Lauflicht PIC 16F688 mit SMD LEDs auf Lochraster - www.michael-floessel.deSo, hier nun der letzte Teil zum 8-Kanal Lauflicht.

Unten aufgeführt der Stromlaufplan und der Download der .Zip Datei mit dem kompletten MPLAB Projekt und einem Snapshot der Config-Bits, da die Konfiguration mit Rücksicht auf die evtl. verwendeten Brenner nicht im Code enthalten ist. Die entsprechenden Bits also bitte beim Brennen setzen!

Im Download enthalten:

  • Der MPLAB Workspace
  • Die Fotos zum Platinenaufbau
  • Einfacher Stromlaufplan
  • Screenshot Stromlaufplan

Weiterlesen